An Experiment on the Pulsatile Flow at Transitional Reynolds Numbers—The Fluid Dynamical Meaning of the Blood Flow Parameters in the Aorta

1993 ◽  
Vol 115 (4A) ◽  
pp. 412-417 ◽  
Author(s):  
Masahide Nakamura ◽  
Wataru Sugiyama ◽  
Manabu Haruna

An experiment on the fully developed sinusoidal pulsatile flow at transitional Reynolds numbers was performed to evaluate the basic characteristics of the wall shear stress. In this experiment, the wall shear stress was calculated from the measured section averaged axial velocity and the pressure gradient by using the section averaged Navier-Stokes equation. The experimental results showed that the ratio of the amplitude of the wall shear stress to the amplitude of the pressure gradient had the maximum value when the time averaged Reynolds number was about 4000 and the Womersley number was about 10. As this condition is close to the blood flow condition in the human aorta, it is suggested that the parameter of the aorta has an effect to increase the amplitude of the wall shear stress acting on the arterial wall.

2003 ◽  
Vol 125 (2) ◽  
pp. 207-217 ◽  
Author(s):  
E. A. Finol ◽  
K. Keyhani ◽  
C. H. Amon

In the abdominal segment of the human aorta under a patient’s average resting conditions, pulsatile blood flow exhibits complex laminar patterns with secondary flows induced by adjacent branches and irregular vessel geometries. The flow dynamics becomes more complex when there is a pathological condition that causes changes in the normal structural composition of the vessel wall, for example, in the presence of an aneurysm. This work examines the hemodynamics of pulsatile blood flow in hypothetical three-dimensional models of abdominal aortic aneurysms (AAAs). Numerical predictions of blood flow patterns and hemodynamic stresses in AAAs are performed in single-aneurysm, asymmetric, rigid wall models using the finite element method. We characterize pulsatile flow dynamics in AAAs for average resting conditions by means of identifying regions of disturbed flow and quantifying the disturbance by evaluating flow-induced stresses at the aneurysm wall, specifically wall pressure and wall shear stress. Physiologically realistic abdominal aortic blood flow is simulated under pulsatile conditions for the range of time-average Reynolds numbers 50⩽Rem⩽300, corresponding to a range of peak Reynolds numbers 262.5⩽Repeak⩽1575. The vortex dynamics induced by pulsatile flow in AAAs is depicted by a sequence of four different flow phases in one period of the cardiac pulse. Peak wall shear stress and peak wall pressure are reported as a function of the time-average Reynolds number and aneurysm asymmetry. The effect of asymmetry in hypothetically shaped AAAs is to increase the maximum wall shear stress at peak flow and to induce the appearance of secondary flows in late diastole.


2001 ◽  
Vol 123 (5) ◽  
pp. 474-484 ◽  
Author(s):  
Ender A. Finol ◽  
Cristina H. Amon

Numerical predictions of blood flow patterns and hemodynamic stresses in Abdominal Aortic Aneurysms (AAAs) are performed in a two-aneurysm, axisymmetric, rigid wall model using the spectral element method. Physiologically realistic aortic blood flow is simulated under pulsatile conditions for the range of time-averaged Reynolds numbers 50⩽Rem⩽300, corresponding to a range of peak Reynolds numbers 262.5⩽Repeak⩽1575. The vortex dynamics induced by pulsatile flow in AAAs is characterized by a sequence of five different flow phases in one period of the flow cycle. Hemodynamic disturbance is evaluated for a modified set of indicator functions, which include wall pressure pw, wall shear stress τw, and Wall Shear Stress Gradient (WSSG). At peak flow, the highest shear stress and WSSG levels are obtained downstream of both aneurysms, in a pattern similar to that of steady flow. Maximum values of wall shear stresses and wall shear stress gradients obtained at peak flow are evaluated as a function of the time-average Reynolds number resulting in a fourth order polynomial correlation. A comparison between predictions for steady and pulsatile flow is presented, illustrating the importance of considering time-dependent flow for the evaluation of hemodynamic indicators.


1991 ◽  
Vol 113 (1) ◽  
pp. 111-115 ◽  
Author(s):  
J. M. Khodadadi

Wall pressure distribution and shear stress fields for pulsatile laminar flow in a 90-degree bifurcation with rectangular cross sections are evaluated using the results of the numerical solution of the Navier-Stokes equation. The extent of the adverse pressure gradient on the bottom wall of the main duct and the upstream wall of the branch closely correlate to the behavior of the two dynamic recirculation zones which are formed on these two walls. Multiple zones of high and low shear stresses at various sites in the bifurcation are observed. The extent of the fluctuations of the maximum and minimum shear stress is identified. Next-to-the-wall laser Doppler anemometer velocity measurements are used to estimate the shear stress distribution on the walls. In general, qualitative agreement between the experimental and computed wall shear stress values is observed. The variation of the wall shear stress in the vicinity of the branch is discussed in light of the highly perturbed flow field.


Author(s):  
T. Gunnar Johansson ◽  
Luciano Castillo

Near wall measurements have been performed in a zero pressure gradient turbulent boundary layer at low to moderate local Reynolds numbers using Laser-Doppler Anemometry in order to investigate how accurately the wall shear stress can be determined. Also, scaling problems are particularly difficult at low Reynolds numbers since they involve simultaneous influences of both inner and outer scales and this is most clearly observed in the near-wall region. In order to fully describe the zero pressure gradient turbulent boundary layer at low to moderate local Reynolds numbers it is necessary to accurately measure a number of quantities. These include the mean velocity and Reynolds stresses, and their spatial derivatives all the way down to the wall (y+∼1). Integral parameters that need to be measured are the wall shear stress and boundary layer thickness, particularly the momentum thickness. Problems with the measurement of field properties get worse close to a wall, and they get worse for increasing local Reynolds number. Three different approaches to measure the wall shear stress were examined. It was found that small measurement errors in the mean velocity close to the wall significantly reduced the accuracy in determining the wall shear stress by measuring the velocity gradient at the wall. The constant stress layer was found to be affected by the advection terms. However, it was found that taking the small pressure gradient into account and improving on the spatial resolution in the outer part of the boundary layer made the momentum integral method reliable.


2010 ◽  
Vol 2010 ◽  
pp. 1-26 ◽  
Author(s):  
D. S. Sankar

Pulsatile flow of a two-fluid model for blood flow through stenosed narrow arteries is studied through a mathematical analysis. Blood is treated as two-phase fluid model with the suspension of all the erythrocytes in the as Herschel-Bulkley fluid and the plasma in the peripheral layer as a Newtonian fluid. Perturbation method is used to solve the system of nonlinear partial differential equations. The expressions for velocity, wall shear stress, plug core radius, flow rate and resistance to flow are obtained. The variations of these flow quantities with stenosis size, yield stress, axial distance, pulsatility and amplitude are analyzed. It is found that pressure drop, plug core radius, wall shear stress and resistance to flow increase as the yield stress or stenosis size increases while all other parameters held constant. It is observed that the percentage of increase in the magnitudes of the wall shear stress and resistance to flow over the uniform diameter tube is considerably very low for the present two-fluid model compared with that of the single-fluid model of the Herschel-Bulkley fluid. Thus, the presence of the peripheral layer helps in the functioning of the diseased arterial system.


2021 ◽  
Author(s):  
Maria Jumani

The goal of this research is to analyze the effect of blood flow through expansions by using the KarmanPohlhausen method. The Karman-Pohlhausen method has previously been used in several research works to analyze the flow through constrictions. In this Thesis, the effect of different flow parameters (Reynolds number, compressibility, and slip) on pressure, pressure gradient, centerline velocity, and on wall shear stress are analyzed. Our results show that the pressure gradient curves are most affected by increasing Reynolds number and compressibility, as well as for smaller slip values (ws0). Furthermore, the scaled centerline velocity was least affected by varying Reynolds and Mach numbers, whereas changes are observed in centerline velocity curves for different slip values. The wall shear stress was essentially unchanged by the Reynolds numbers, compressibility range and slip values considered in this Thesis.


2014 ◽  
Vol 11 (4) ◽  
pp. 185-195 ◽  
Author(s):  
G. C. Shit ◽  
M. Roy ◽  
A. Sinha

This paper presents a theoretical study of blood flow through a tapered and overlapping stenosed artery under the action of an externally applied magnetic field. The fluid (blood) medium is assumed to be porous in nature. The variable viscosity of blood depending on hematocrit (percentage volume of erythrocytes) is taken into account in order to improve resemblance to the real situation. The governing equation for laminar, incompressible and Newtonian fluid subject to the boundary conditions is solved by using a well known Frobenius method. The analytical expressions for velocity component, volumetric flow rate, wall shear stress and pressure gradient are obtained. The numerical values are extracted from these analytical expressions and are presented graphically. It is observed that the influence of hematocrit, magnetic field and the shape of artery have important impact on the velocity profile, pressure gradient and wall shear stress. Moreover, the effect of primary stenosis on the secondary one has been significantly observed.


Sign in / Sign up

Export Citation Format

Share Document