scholarly journals Theoretical Study of Compressible Flow through Aneurysms

2021 ◽  
Author(s):  
Maria Jumani

The goal of this research is to analyze the effect of blood flow through expansions by using the KarmanPohlhausen method. The Karman-Pohlhausen method has previously been used in several research works to analyze the flow through constrictions. In this Thesis, the effect of different flow parameters (Reynolds number, compressibility, and slip) on pressure, pressure gradient, centerline velocity, and on wall shear stress are analyzed. Our results show that the pressure gradient curves are most affected by increasing Reynolds number and compressibility, as well as for smaller slip values (ws0). Furthermore, the scaled centerline velocity was least affected by varying Reynolds and Mach numbers, whereas changes are observed in centerline velocity curves for different slip values. The wall shear stress was essentially unchanged by the Reynolds numbers, compressibility range and slip values considered in this Thesis.

2021 ◽  
Author(s):  
Maria Jumani

The goal of this research is to analyze the effect of blood flow through expansions by using the KarmanPohlhausen method. The Karman-Pohlhausen method has previously been used in several research works to analyze the flow through constrictions. In this Thesis, the effect of different flow parameters (Reynolds number, compressibility, and slip) on pressure, pressure gradient, centerline velocity, and on wall shear stress are analyzed. Our results show that the pressure gradient curves are most affected by increasing Reynolds number and compressibility, as well as for smaller slip values (ws0). Furthermore, the scaled centerline velocity was least affected by varying Reynolds and Mach numbers, whereas changes are observed in centerline velocity curves for different slip values. The wall shear stress was essentially unchanged by the Reynolds numbers, compressibility range and slip values considered in this Thesis.


Author(s):  
Matt Royer ◽  
Jane H. Davidson ◽  
Lorraine F. Francis ◽  
Susan C. Mantell

This paper presents an analytical model and experimental study of adhesion and fluid shear removal of calcium carbonate scale on polypropylene and copper tubes in laminar and turbulent water flows, with a view toward understanding how scale can be controlled in solar absorbers and heat exchangers. The tubes are first coated with scale and then inserted in a flow through apparatus. Removal is measured gravimetrically for Reynolds numbers from 525 to 5550, corresponding to wall shear stresses from 0.16 to 6.0 Pa. The evolutionary structure of the scale is visualized with scanning electron microscopy. Consistent with the predictive model, calcium carbonate is more easily removed from polypropylene than copper. In a laminar flow with a wall shear stress of 0.16 Pa, 65% of the scale is removed from polypropylene while only 10% is removed from copper. Appreciable removal of scale from copper requires higher shear stresses. At Reynolds number of 5500, corresponding to a wall shear stress of 6.0 Pa, 30% of the scale is removed from the copper tubes. The results indicate scale will be more easily removed from polypropylene, and by inference other polymeric materials, than copper by flushing with water.


Author(s):  
T. Gunnar Johansson ◽  
Luciano Castillo

Near wall measurements have been performed in a zero pressure gradient turbulent boundary layer at low to moderate local Reynolds numbers using Laser-Doppler Anemometry in order to investigate how accurately the wall shear stress can be determined. Also, scaling problems are particularly difficult at low Reynolds numbers since they involve simultaneous influences of both inner and outer scales and this is most clearly observed in the near-wall region. In order to fully describe the zero pressure gradient turbulent boundary layer at low to moderate local Reynolds numbers it is necessary to accurately measure a number of quantities. These include the mean velocity and Reynolds stresses, and their spatial derivatives all the way down to the wall (y+∼1). Integral parameters that need to be measured are the wall shear stress and boundary layer thickness, particularly the momentum thickness. Problems with the measurement of field properties get worse close to a wall, and they get worse for increasing local Reynolds number. Three different approaches to measure the wall shear stress were examined. It was found that small measurement errors in the mean velocity close to the wall significantly reduced the accuracy in determining the wall shear stress by measuring the velocity gradient at the wall. The constant stress layer was found to be affected by the advection terms. However, it was found that taking the small pressure gradient into account and improving on the spatial resolution in the outer part of the boundary layer made the momentum integral method reliable.


2014 ◽  
Vol 11 (4) ◽  
pp. 185-195 ◽  
Author(s):  
G. C. Shit ◽  
M. Roy ◽  
A. Sinha

This paper presents a theoretical study of blood flow through a tapered and overlapping stenosed artery under the action of an externally applied magnetic field. The fluid (blood) medium is assumed to be porous in nature. The variable viscosity of blood depending on hematocrit (percentage volume of erythrocytes) is taken into account in order to improve resemblance to the real situation. The governing equation for laminar, incompressible and Newtonian fluid subject to the boundary conditions is solved by using a well known Frobenius method. The analytical expressions for velocity component, volumetric flow rate, wall shear stress and pressure gradient are obtained. The numerical values are extracted from these analytical expressions and are presented graphically. It is observed that the influence of hematocrit, magnetic field and the shape of artery have important impact on the velocity profile, pressure gradient and wall shear stress. Moreover, the effect of primary stenosis on the secondary one has been significantly observed.


2017 ◽  
Vol 815 ◽  
pp. 26-59 ◽  
Author(s):  
C. Vamsi Krishna ◽  
Namrata Gundiah ◽  
Jaywant H. Arakeri

Unsteady flows in highly curved geometries are of interest in many engineering applications and also in physiological flows. In this study, we use flow visualization and computational fluid dynamics to study unsteady flows in a highly curved tube ($\unicode[STIX]{x1D6FD}=0.3$) with square cross-section; here, $\unicode[STIX]{x1D6FD}$ is the ratio of the half edge length to the radius of curvature of the tube. To explore the combined effects of curvature and pulsatility, we use a single flow pulse of duration $T$ and peak area averaged axial velocity $U_{p(max)}$, which are independently varied to investigate a range of Dean and Womersley numbers. This range includes cases corresponding to flows in the ascending aorta. We observe radially inward moving secondary flows which have the structure of wall jets on the straight walls; their subsequent collision on the inner wall leads to a re-entrant radially outward moving jet. The wall jet arises due to an imbalance between the centrifugal force and the radial pressure gradient. During the deceleration phase, the low-axial-momentum fluid accumulated in the jet reverses direction and leads to flow separation near the inner wall. We use boundary layer equations to derive scales, which have not been reported earlier, for the secondary flow velocities, the wall shear stress components and the distance ($\hat{P}$) traversed by the secondary flow structures in the transverse plane. We show that $\hat{P}$ predicts the movement of vortical structures until collision. In the limit $\unicode[STIX]{x1D6FD}\rightarrow 0$, the Reynolds number based on this secondary flow velocity scale asymptotes to the secondary streaming Reynolds number proposed by Lyne (J. Fluid Mech., vol. 45 (01), 1971, pp. 13–31) in loosely curved pipes. The magnitude of the secondary flow velocity is high and ${\sim}40\,\%$ of $U_{p(max)}$ for physiological flow conditions. We show that the flow separation on the inner wall has origins in the secondary flow, which was reported in a few earlier studies, and is not due to the axial pressure gradient in the tube as proposed earlier. The wall shear stress components, hypothesized to be important in arterial mechanobiology, may be estimated using our scaling relations for geometries with different curvatures and varying pulsatilities.


1993 ◽  
Vol 115 (4A) ◽  
pp. 412-417 ◽  
Author(s):  
Masahide Nakamura ◽  
Wataru Sugiyama ◽  
Manabu Haruna

An experiment on the fully developed sinusoidal pulsatile flow at transitional Reynolds numbers was performed to evaluate the basic characteristics of the wall shear stress. In this experiment, the wall shear stress was calculated from the measured section averaged axial velocity and the pressure gradient by using the section averaged Navier-Stokes equation. The experimental results showed that the ratio of the amplitude of the wall shear stress to the amplitude of the pressure gradient had the maximum value when the time averaged Reynolds number was about 4000 and the Womersley number was about 10. As this condition is close to the blood flow condition in the human aorta, it is suggested that the parameter of the aorta has an effect to increase the amplitude of the wall shear stress acting on the arterial wall.


2021 ◽  
Vol 8 (3) ◽  
pp. 485-491
Author(s):  
Saktipada Nanda ◽  
Biswadip Basu Mallik ◽  
Samarpan Deb Majumder ◽  
Ramesh Kumar Karthick ◽  
Sagar Suman ◽  
...  

The research work explores blood flow into a stenosed artery, or one with abnormal growth within it. At the throats and at the critical height of the stenosis, mathematical and computational models have been developed to calculate the various associated parameters such as flow rate, pressure gradient, impedance, and wall shear stress. Modeling blood as a power law fluid showed the dependency of these quantities on temporal and spatial variables, as well as the frequency of the flow oscillation in time and the key parameters of the flow mechanism. The exponential curve is the geometry of the stenosis studied in this analysis. Analytical expressions for axial velocity, volumetric flow rate, pressure gradient, blood flow resistance, and shear stress have been computed and simulated in ANSYS to generate useful results with respect to variation of flow parameters with power law indices and also for comparison between Newtonian and Non- Newtonian models of blood. Upon investigation, it was found that wall shear stress (WSS) increases with stenosis depth and therefore, plays a crucial role in affecting other flow parameters. At power law index 0.6, the highest shear stress and flow velocity were encountered at approximately 7 Pa and 0.5 m/s respectively.


2010 ◽  
Vol 132 (1) ◽  
Author(s):  
Matt Royer ◽  
Jane H. Davidson ◽  
Lorraine F. Francis ◽  
Susan C. Mantell

This paper presents an analytical model and an experimental study of adhesion and fluid shear removal of calcium carbonate scale on polypropylene and copper tubes in laminar and turbulent water flows, with a view toward understanding how scale can be controlled in solar absorbers and heat exchangers. The tubes are first coated with scale and then inserted in a flow-through apparatus. Removal is measured gravimetrically for Reynolds numbers from 525 to 5550, corresponding to wall shear stresses from 0.16 Pa to 6.0 Pa. The evolutionary structure of the scale is visualized with scanning electron microscopy. Consistent with the predictive model, calcium carbonate is more easily removed from polypropylene than copper. In a laminar flow with a wall shear stress of 0.16 Pa, 65% of the scale is removed from polypropylene while only 10% is removed from copper. Appreciable removal of scale from copper requires higher shear stresses. At Reynolds number of 5500, corresponding to a wall shear stress of 6.0 Pa, 30% of the scale is removed from the copper tubes. The results indicate scale will be more easily removed from polypropylene, and by inference other polymeric materials, than from copper by flushing with water.


Sign in / Sign up

Export Citation Format

Share Document