Preview Control for Vehicle Lateral Guidance in Highway Automation

1993 ◽  
Vol 115 (4) ◽  
pp. 679-686 ◽  
Author(s):  
Huei Peng ◽  
Masayoshi Tomizuka

The continuous time deterministic optimal preview control algorithm is applied to the lateral guidance of a vehicle for an automated highway. In the lateral guidance problem, the front wheel steering angle of the vehicle is controlled so that the vehicle follows the center for a lane with small tracking error and maintains good ride quality simultaneously. A preview control algorithm is obtained by minimizing a quadratic performance index which includes terms representing the passenger ride quality as well as the lateral tracking error, each of these terms is multiplied by a frequency dependent weight. This design method is known as a frequency shaped linear quadratic (FSLQ) optimal control approach. It permits incorporating frequency domain design specifications such as high frequency robustness and ride quality in the optimal controller design. It is shown that the optimal preview control law consists of a feedback control term and two feedforward control terms. The feedback term is exactly the same as that of traditional LQ control algorithm. The feedforward preview control action significantly improves the tracking performance and ride quality. Frequency-domain analyses, as well as numerical simulation results, show the improvements achieved by using the preview control algorithm in both the frequency and time domains.

Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 420
Author(s):  
Phong B. Dao

Multiagent control system (MACS) has become a promising solution for solving complex control problems. Using the advantages of MACS-based design approaches, a novel solution for advanced control of mechatronic systems has been developed in this paper. The study has aimed at integrating learning control into MACS. Specifically, learning feedforward control (LFFC) is implemented as a pattern for incorporation in MACS. The major novelty of this work is that the feedback control part is realized in a real-time periodic MACS, while the LFFC algorithm is done on-line, asynchronously, and in a separate non-real-time aperiodic MACS. As a result, a MACS-based LFFC design method has been developed. A second-order B-spline neural network (BSN) is used as a function approximator for LFFC whose input-output mapping can be adapted during control and is intended to become equal to the inverse model of the plant. To provide real-time features for the MACS-based LFFC system, the open robot control software (OROCOS) has been employed as development and runtime environment. A case study using a simulated linear motor in the presence of nonlinear cogging and friction force as well as mass variations is used to illustrate the proposed method. A MACS-based LFFC system has been designed and implemented for the simulated plant. The system consists of a setpoint generator, a feedback controller, and a time-index LFFC that can learn on-line. Simulation results have demonstrated the applicability of the design method.


Author(s):  
Sicheng Yi ◽  
Qingze Zou

In this paper, we propose a finite-impulse-response (FIR)-based feedforward control approach to mitigate the acoustic-caused probe vibration during atomic force microscope (AFM) imaging. Compensation for the extraneous probe vibration is needed to avoid the adverse effects of environmental disturbances such as acoustic noise on AFM imaging, nanomechanical characterization, and nanomanipulation. Particularly, residual noise still exists even though conventional passive noise cancellation apparatus has been employed. The proposed technique exploits a data-driven approach to capture both the noise propagation dynamics and the noise cancellation dynamics in the controller design, and is illustrated through the experimental implementation in AFM imaging application.


Author(s):  
Shenjin Zhu ◽  
Yuping He

The Linear Quadratic Gaussian (LQG) technique has been applied to the design of active vehicle suspensions (AVSs) for improving ride quality and handling performance. LQG-based AVSs have achieved good performance if an accurate vehicle model is available. However, these AVSs exhibit poor robustness when the vehicle model is not accurate and vehicle operating conditions vary. The H∞ control theory, rooted in the LQG technique, specifically targets on robustness issues on models with parametric uncertainties and un-modelled dynamics. In this research, an AVS is designed using the H∞ loop-shaping control, design optimization, and parallel computing techniques. The resulting AVS is compared against the baseline design through numerical simulations.


Author(s):  
Ryan M. Robinson ◽  
Norman M. Wereley ◽  
Curt S. Kothera

Pneumatic artificial muscles (PAMs) are lightweight, flexible actuators capable of higher specific work than comparably-sized hydraulic actuators at the same pressure and electric motors. PAMs are composed of an elastomeric bladder surrounded by a helically braided sleeve. Lightweight, compliant actuators are particularly desirable in portable, heavy-lift robotic systems intended for interaction with humans, such as those envisioned for patient assistance in hospitals and battlefield casualty extraction. However, smooth and precise control remains difficult because of nonlinearities in the dynamic response. The objective of this paper is to develop a control algorithm that satisfies accuracy and smooth motion requirements for a two degree-of-freedom manipulator actuated by pneumatic artificial muscles and intended for interaction with humans, such as lifting a human. This control strategy must be capable of responding to large, abrupt variations in payload weight over a high range of motion. In previous work, the authors detailed the design and construction of a proof-of-concept PAM-based manipulator. The present work investigates the feasibility of combining output feedback using proportional-integral-derivative control or fuzzy logic control with model-based feedforward compensation to achieve improved closed-loop performance. The model upon which the controller is based incorporates the internal airflow dynamics, the geometric parameters of the pneumatic actuators, and the arm dynamics. Simulations were performed in order to validate the control algorithm, guide controller design, and predict optimal gains. Using real-time interface software and hardware, the controller was implemented and experimentally tested on the manipulator. Performance was evaluated for several trajectories, and different payload weights. The effect of varying the feedforward gain was also analyzed. Model refinement further improved performance.


2003 ◽  
Vol 125 (1) ◽  
pp. 134-138 ◽  
Author(s):  
Levent Gu¨venc¸

A new and simple repetitive controller design procedure in controller parameter space, where the structure of the filters in the repetitive controller are fixed from the start and parameters within these filters are tuned, is presented here. This approach results in simple and physically meaningful controllers that are easily implementable. The design method is based on mapping frequency domain performance specifications into a chosen plane of controller parameters. Sensitivity function magnitude bounds and a relative stability measure are chosen as the frequency domain specifications to be mapped into controller parameter space here. The design method is illustrated numerically in the context of a servohydraulic material testing machine application available in the literature.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Xiao Yu

In this paper, for the first time, the observer-based decentralized output tracking control problem with preview action for a class of interconnected nonlinear systems is converted into a regulation problem for N augmented error subsystems composed of the tracking error dynamics, the difference equation of the state observer, and the available future reference trajectory dynamics associated with each individual subsystem. The developed innovative formulation of an observer-based decentralized preview tracking control scheme consists of the integral control action, the observer-based state feedback control action, and the preview action of the desired trajectory. The controller design feasibility conditions are formulated in terms of a linear matrix inequality (LMI) by using the Lyapunov function approach to ensure the existence of the suggested observer-based decentralized control strategy. Furthermore, both decentralized observer gain matrices and decentralized tracking controller gain matrices can be efficiently and simultaneously computed through a one-step LMI procedure. Stability analysis of the closed-loop augmented subsystem is carried out to illustrate that all tracking errors asymptotically converge toward zero. Finally, a numerical example is provided to demonstrate the effectiveness of the suggested control approach.


Sign in / Sign up

Export Citation Format

Share Document