Instability of Nanofluids in Natural Convection

2008 ◽  
Vol 130 (7) ◽  
Author(s):  
D. Y. Tzou

Abstract Instability of natural convection in nanofluids is investigated in this work. As a result of Brownian motion and thermophoresis of nanoparticles, the critical Rayleigh number is shown to be much lower, by one to two orders of magnitude, as compared to that for regular fluids. The highly promoted turbulence, in the presence of nanoparticles for as little as 1% in volume fraction, significantly enhances heat transfer in nanofluids, which may be much more pronounced than the enhancement of the effective thermal conductivity alone. Seven dominating groups are extracted from the nondimensional analysis. By extending the method of eigenfunction expansions in conjunction with the method of weighted residuals, closed-form solutions are derived for the Rayleigh number to justify such remarkable change by the nanoparticles at the onset of instability.

Author(s):  
Didarul Ahasan Redwan ◽  
Md. Habibur Rahman ◽  
Hasib Ahmed Prince ◽  
Emdadul Haque Chowdhury ◽  
M. Ruhul Amin

Abstract A numerical study on natural convection heat transfer in a right triangular solar collector filled with CNT-water and Cuwater nanofluids has been conducted. The inclined wall and the bottom wall of the cavity are maintained at a relatively lower temperature (Tc), and higher temperature (Th), respectively, whereas the vertical wall, is kept adiabatic. The governing non-dimensional partial differential equations are solved by using the Galerkin weighted residual finite element method. The Rayleigh number (Ra) and the solid volume-fraction of nanoparticles (ϕ) are varied in the range of 103 ≤ Ra ≤ 106, and 0 ≤ ϕ ≤ 0.1, respectively, to carry out the parametric simulations within the laminar region. Corresponding thermal and flow fields are presented via isotherms and streamlines. Variations of average Nusselt number as a function of Rayleigh number have been examined for different solid volume-fraction of nanoparticles. It has been found that the natural convection heat transfer becomes stronger with the increment of solid volume fraction and Rayleigh number, but the strength of circulation reduces with increasing nanoparticles’ concentration at low Ra. Conduction mode dominates for lower Ra up to a certain limit of 104. It is also observed that when the solid volume fraction is increased from 0 to 0.1 for a particular Rayleigh number, the average Nusselt number is increased to a great extent, but surprisingly, the rate of increment is more pronounced at lower Ra. Moreover, it is seen that Cu-water nanofluid offers slightly better performance compared to CNT-water but the difference is very little, especially at lower Ra.


2020 ◽  
Vol 30 (10) ◽  
pp. 4629-4648
Author(s):  
Zehba A.S. Raizah

Purpose The purpose of this study is to apply the incompressible smoothed particle hydrodynamics method for simulating the natural convection flow inside a cavity including cross blades or circular cylinder cylinder. Design/methodology/approach The base fluid is water and copper-water nanofluid is treated as a working fluid. The left and rights walls are maintained at a cool temperature, the horizontal cavity walls are isolated and the inner shape was heated. The physical parameters are the length of the blades L_Blade, the number of cross blades, circular cylinder radius L_R, Rayleigh number Ra and the nanoparticles volume fraction. Findings The results reveal that the lengths of the cross blade, number of the blades and radius of the circular cylinder is working as an enhancement factor for heat transfer and fluid flows inside a cavity. Adding nanoparticles augments heat transfer and reduces the fluid flow intensity inside a cavity. The best case for buoyancy-driven flow was obtained when the inner shape is the circular cylinder at a higher Rayleigh number. Originality/value This work uses a distinctive numerical method to study the natural convection heat from cross blades inside a cavity filled with nanofluid. It provides a new analysis of this issue and presented good results.


Author(s):  
C. Y. Shen ◽  
M. Yang ◽  
L. Li ◽  
Y. W. Zhang

The heat dissipation of current busbur in power plant is one of the important issues in power transmission, usually through the cylinder slotted to strengthen heat dissipation. Natural convection in a cylinder with an internal slotted annulus is the computational model abstracted from it. Natural convection in a cylinder with an concentric slotted annulus is concerned. Attention is focused on the effects of different slotted sizes on natural convection. Numerical results showed that, the equivalent thermal conductivity increases with the increase of Rayleigh number. At high Ra, the system heat transfer exhibit rich nonlinear characteristics. When the slotted direction or the slotted degree changed, it would have an important impact on the flow and heat transfer in the system, and also influence the related nonlinear characteristics.


2020 ◽  
Author(s):  
Sattar Aljobair ◽  
Akeel Abdullah Mohammed ◽  
Israa Alesbe

Abstract The natural convection heat transfer and fluid flow characteristic of water based Al2O3 nano-fluids in a symmetrical and unsymmetrical corrugated annulus enclosure has been studied numerically using CFD. The inner cylinder is heated isothermally while the outer cylinder is kept constant cold temperature. The study includes eight models of corrugated annulus enclosure with constant aspect ratio of 1.5. The governing equations of fluid motion and heat transfer are solved using stream-vorticity formulation in curvilinear coordinates. The range of solid volume fractions of nanoparticles extends from PHI=0 to 0.25, and Rayleigh number varies from 104 to 107. Streamlines, isotherms, local and average Nusselt number of inner and outer cylinder has been investigated in this study. Sixty-four correlations have been deduced for the average Nusselt number for the inner and outer cylinders as a function of Rayleigh number have been deduced for eight models and five values of volume fraction of nano particles with an accuracy range 6-12 %. The results show that, the average heat transfer rate increases significantly as particle volume fraction and Rayleigh number increase. Also, increase the number of undulations in unsymmetrical annuli reduces the heat transfer rates which remain higher than that in symmetrical annuli. There is no remarkable change in isotherms contour with increase of volume fraction of nanofluid.


2019 ◽  
Vol 30 (01) ◽  
pp. 1950006 ◽  
Author(s):  
Abdellaziz Yahiaoui ◽  
Mahfoud Djezzar ◽  
Hassane Naji

This paper performs a numerical analysis of the natural convection within two-dimensional enclosures (square enclosure and enclosures with curved walls) full of a H2O-Cu nanofluid. While their vertical walls are isothermal with a cold temperature [Formula: see text], the horizontal top wall is adiabatic and the bottom wall is kept at a sinusoidal hot temperature. The working fluid is assumed to be Newtonian and incompressible. Three values of the Rayleigh number were considered, viz., 103, 104, 105, the Prandtl number is fixed at 6.2, and the volume fraction [Formula: see text] is taken equal to 0% (pure water), 10% and 20%. The numerical simulation is achieved using a 2D-in-house CFD code based on the governing equations formulated in bipolar coordinates and translated algebraically via the finite volume method. Numerical results are presented in terms of streamlines, isotherms and local and average Nusselt numbers. These show that the heat transfer rate increases with both the volume fraction and the Rayleigh number, and that the average number of Nusselt characterizing the heat transfer raises with the nanoparticles volume fraction.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Mohamed Sannad ◽  
Abourida Btissam ◽  
Belarche Lahoucine

This article consists of a numerical study of natural convection heat transfer in three-dimensional cavity filled with nanofluids. This configuration is heated by a partition maintained at a hot constant and uniform temperature TH. The right and left vertical walls are kept at a cold temperature TC while the rest is adiabatic. The fluid flow and heat transfer in the cavity are studied for different sets of the governing parameters, namely, the nanofluid type, the Rayleigh number Ra = 103, 104, 105, and 106, and the volume fraction Ф varying between Ф = 0 and 0.1. The obtained results show a positive effect of the volume fraction and the Rayleigh number on the heat transfer improvement. The analysis of the results related to the heat transfer shows that the copper-based nanofluid guarantees the best thermal transfer. In addition, the increase of the heating section size and Ra leads to an increased amount of heat. Similarly, increasing the volume fraction improves the intensification of the flow and increases the heat exchange.


2012 ◽  
Vol 16 (5) ◽  
pp. 1317-1323 ◽  
Author(s):  
Ching-Chang Cho ◽  
Her-Terng Yau ◽  
Cha’o-Kuang Chen

This paper investigates the natural convection heat transfer enhancement of Al2O3-water nanofluid in a U-shaped cavity. In performing the analysis, the governing equations are modeled using the Boussinesq approximation and are solved numerically using the finite-volume numerical method. The study examines the effects of the nanoparticle volume fraction, the Rayleigh number and the geometry parameters on the mean Nusselt number. The results show that for all values of the Rayleigh number, the mean Nusselt number increases as the volume fraction of nanoparticles increases. In addition, it is shown that for a given length of the heated wall, extending the length of the cooled wall can improve the heat transfer performance.


2012 ◽  
Vol 16 (2) ◽  
pp. 489-501 ◽  
Author(s):  
Ehsan Sourtiji ◽  
Seyed Hosseinizadeh

A numerical study of natural convection heat transfer through an alumina-water nanofluid inside L-shaped cavities in the presence of an external magnetic field is performed. The study has been carried out for a wide range of important parame?ters such as Rayleigh number, Hartmann number, aspect ratio of the cavity and solid volume fraction of the nanofluid. The influence of the nanoparticle, buoyancy force and the magnetic field on the flow and temperature fields have been plotted and discussed. The results show that after a critical Rayleigh number depending on the aspect ratio, the heat transfer in the cavity rises abruptly due to some significant changes in flow field. It is also found that the heat transfer enhances in the presence of the nanoparticles and increases with solid volume fraction of the nanofluid. In addition, the performance of the nanofluid utilization is more effective at high Ray?leigh numbers. The influence of the magnetic field has been also studied and de?duced that it has a remarkable effect on the heat transfer and flow field in the cavity that as the Hartmann number increases the overall Nusselt number is significantly decreased specially at high Rayleigh numbers.


1993 ◽  
Vol 254 ◽  
pp. 345-362 ◽  
Author(s):  
Carol Braester ◽  
Peter Vadasz

The results of an investigation on the effect of a weak heterogeneity of a porous medium on natural convection are presented. A medium heterogeneity is represented by spatial variations of the permeability and of the effective thermal conductivity. As a general rule the existence of horizontal thermal gradients in heterogeneous porous media provides a sufficient condition for the occurrence of natural convection. The implications of this condition are investigated for horizontal layers or rectangular domains subject to isothermal top and bottom boundary conditions. Results lead to a restriction on the classes of thermal conductivity functions which allow a motionless solution. Analytical solutions for rectangular weak heterogeneous porous domains heated from below, consistent with a basic motionless solution, are obtained by applying the weak nonlinear theory. The amplitude of the convection is obtained from an ordinary non-homogeneous differential equation, with a forcing term representative of the medium heterogeneity with respect to the effective thermal conductivity. A smooth transition through the critical Rayleigh number is obtained, thus removing a bifurcation which usually appears in homogeneous domains with perfect boundaries, at the critical value of the Rayleigh number. Within a certain range of slightly supercritical Rayleigh numbers, a symmetric thermal conductivity function is shown to reinforce a symmetrical flow while antisymmetric functions favour an antisymmetric flow. Except for the higher-order solutions, the weak heterogeneity with respect to permeability plays a relatively passive role and does not affect the solutions at the leading order. In contrast, the weak heterogeneity with respect to the effective thermal conductivity does have a significant effect on the resulting flow pattern.


2020 ◽  
Vol 847 ◽  
pp. 114-119
Author(s):  
Barbie Leena Barhoi ◽  
Ramesh Chandra Borah ◽  
Sandeep Singh

The present study relates to numerical investigation of natural convection heat transfer in a nanofluid filled square enclosure. One side of the enclosure is maintained at high temperature and the other side at a low temperature; while the top and bottom sides are adiabatic. The commercial CFD software ANSYS-FLUENT© was used to solve this numerical problem with the governing differential equations discretized by a control volume approach. nanofluids of Cu-water, Al2O3-water and TiO2-water have been simulated for a range of Rayleigh numbers and volume fractions. The results were obtained in the form of streamlines and isotherms. Interpretations of the results are done based on heat transfer rates, volume fraction, Rayleigh number and Nusselt number. It is to be noted that addition of nanoparticles enhances the heat transfer rate. It is also observed that the Nusselt number is highly affected by volume fraction and Rayleigh number.


Sign in / Sign up

Export Citation Format

Share Document