Oscillatory Fluid Flow Through a Porous Medium Channel Bounded by Two Impermeable Parallel Plates

1991 ◽  
Vol 113 (3) ◽  
pp. 509-511 ◽  
Author(s):  
J. M. Khodadadi

In the absence of the inertia effects, the analytic solution to the fully developed oscillatory fluid flow through a porous medium channel bounded by two impermeable parallel plates is presented. For the limiting case when a highly viscous fluid undergoes slow pulsation in a high porosity medium, the phase lag vanishes and similar velocity profiles are observed. At the other extreme limiting situation, fluid flow near the symmetry plane has a phase lag of 90 deg from the pressure gradient wave. Moreover, the velocity profiles exhibit maxima next to the wall which is similar to the “channeling” phenomenon observed in variable-porosity studies. It is shown that the temporal average of the frictional drag over a period vanishes, indicating no net energy losses due to oscillations.

1981 ◽  
Vol 21 (05) ◽  
pp. 565-572 ◽  
Author(s):  
Aniekan W. Iyoho ◽  
Jamal J. Azar

Abstract This paper describes a new model for obtaining analytical solutions to the problem of non-Newtonian fluid flow through eccentric annuli. A discussion on non-Newtonian rheology is presented, followed by the development and solution of applicable differential equations using the Ostwald de Waele power-law model and a nonrectangular slot.Results indicate that velocity values are reduced greatly in the reduced region of the eccentric annulus. This is important in directional drilling where the drillpipe tends to lie against the hole. Design of mud flow for cuttings transport on the basis of the nominal average velocity could lead to serious problems associated with cuttings buildup in the low-velocity region of the annulus. Other practical applications of this work include the determination of velocity distribution in chemical processes involving fluid flow through eccentric annuli - e.g., heat exchangers and extruders - and more accurate velocity profiles inside journal bearings, particularly for small diameter ratios.The main advantage in the new approach is that iterative finite difference methods used by previous investigators are avoided. Previous work along present lines used a linearized model and resulted in velocity profiles of unacceptable accuracy. This study improves both the accuracy and the solution technique. Introduction In the petroleum industry, engineers routinely encounter Newtonian and non-Newtonian fluid flow through eccentric annuli during well drilling and, on a smaller scale, during through-casing production, gravel packing, and gas lifting. In analyzing the behavior of drilled cuttings in a wellbore annulus, previous investigators traditionally have assumed that the drillpipe and the hole or casing are concentric. As depicted in Fig. 1, the drillpipe usually is not concentric with the hole, especially during directional drilling when the pipe weight causes a strong tendency for the pipe to lie against the hole. Hence, a realistic prediction of cuttings behavior in an annulus necessarily includes an analysis of the velocity distribution of the transport fluid at various assumed levels of pipe/hole eccentricity.To ensure field applicability of the results, it is necessary to avoid complicated mathematical models that yield analytically intractable solutions. Since equations describing non-Newtonian flow through parallel plates are generally easier to manipulate than conventional annular-flow equations, the eccentric annulus is represented by a nonrectangular slot as shown in Figs. 2 and 3.The associated theory, results, and application are discussed in this paper. To permit use of the results in a wide variety of situations, results are presented in terms of dimensionless ratios. To set the stage for these discussions, several related publications are analyzed briefly. A more detailed literature review can be found in Ref. 1.One of the first studies on the subject was performed in 1955 by Tao and Donovan. They carried out both theoretical and experimental work on laminar and turbulent flow through narrow annuli and showed that the flow through an annulus with a rotating inner pipe could be treated as a higher flow velocity through an annulus of greater length with stationary walls.In 1959, Heyda carried out an analytical investigation of eccentric annulus velocity distribution. SPEJ P. 565^


1992 ◽  
Vol 114 (1) ◽  
pp. 124-126 ◽  
Author(s):  
J. M. Khodadadi ◽  
J. T. Kroll

A theoretical study of the fully developed fluid flow through a porous medium channel bounded by two permeable walls is presented. In the absence of inertia effects, a closed-form analytic solution to the volume-averaged momentum equation is obtained. The velocity profiles are illustrated for several combinations of the porous medium shape parameter and the blowing Reynolds number. The variations of the maximum velocity and the boundary frictional drag coefficient are also discussed.


2013 ◽  
Vol 8-9 ◽  
pp. 225-234
Author(s):  
Dalia Sabina Cimpean

The present study is focused on the mixed convection fluid flow through a porous medium, when a different amount of nanoparticles is added in the base fluid. The nanofluid saturates the porous matrix and different situations of the flow between two walls are presented and discussed. Alternatively mathematical models are presented and discussed. A solution of a system which contains the momentum, Darcy and energy equations, together with the boundary conditions involved, is given. The behavior of different nanofluids, such thatAu-water, Ag-waterandFe-wateris graphically illustrated and compared with the previous results.The research target is to observe the substantial increase of the thermophysical fluid properties, when the porous medium issaturated by a nanofluid instead of a classical Newtonian fluid.


2007 ◽  
Vol 121-123 ◽  
pp. 1089-1092 ◽  
Author(s):  
Jian Zhong Fu ◽  
Xiao Bing Mi ◽  
Yong He ◽  
Zi Chen Chen

Theoretical analysis of the ionized fluid flowing through a cone-shaped nanopore is presented. The internal cross section of the cone-shaped channel is in the range from micro- to nanometer and gradual change from larger to smaller than the Debye length for the ions. The model is developed to predict the ionized fluid flow behaviors in cone-shaped micro/nanochannels. The velocity profiles of ion flow that occur in nanopores are obtained.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Gamal M. Abdel-Rahman Rashed

Chemical entropy generation and magnetohydrodynamic effects on the unsteady heat and fluid flow through a porous medium have been numerically investigated. The entropy generation due to the use of a magnetic field and porous medium effects on heat transfer, fluid friction, and mass transfer have been analyzed numerically. Using a similarity transformation, the governing equations of continuity, momentum, and energy and concentration equations, of nonlinear system, were reduced to a set of ordinary differential equations and solved numerically. The effects of unsteadiness parameter, magnetic field parameter, porosity parameter, heat generation/absorption parameter, Lewis number, chemical reaction parameter, and Brinkman number parameter on the velocity, the temperature, the concentration, and the entropy generation rates profiles were investigated and the results were presented graphically.


Author(s):  
Abbas Hazbavi ◽  
Sajad Sharhani

In this study, the hydrodynamic characteristics are investigated for magneto-micropolar fluid flow through an inclined channel of parallel plates with constant pressure gradient. The lower plate is maintained at constant temperature and upper plate at a constant heat flux. The governing equations which are continuity, momentum and energy are are solved numerically by Explicit Runge-Kutta. The effect of characteristic parameters is discussed on velocity and microrotation in different diagrams. The nonlinear parameter affected the velocity microrotation diagrams. An increase in the value of Hartmann number slows down the movement of the fluid in the channel. The application of the magnetic field induces resistive force acting in the opposite direction of the flow, thus causing its deceleration. Also the effect of pressure gradient is investigated on velocity and microrotation in different diagrams.


1999 ◽  
Author(s):  
Mario F. Letelier ◽  
César E. Rosas

Abstract A theoretical study of the fully developed fluid flow through a confined porous medium is presented. The fluid is described by the Bingham plastic model for small values of the yield number. The analysis allows for many admissible shapes of the wall contour. The velocity field is computed for several combination of relevant parameters, i.e., the yield number, Darcy resistance coefficient and the boundary perturbation parameter. The wall effect is especially highlighted and the characteristics of the central plug region as well. Plots of isovel curves and velocity profiles are included for a variety of flow and geometry parameters.


Sign in / Sign up

Export Citation Format

Share Document