EHD Enhancement of Nucleate Boiling

1990 ◽  
Vol 112 (2) ◽  
pp. 458-464 ◽  
Author(s):  
P. Cooper

This paper describes: (a) an experimental investigation into the effect of an electric field applied to pool boiling of Freon (R114) on a finned tube and (b) a theoretical model of electrically enhanced nucleate boiling applicable to simple surfaces only. Experimental results have shown electrohydrodynamic (EHD) enhancement of heat transfer to be manifest in two ways: (i) elimination of boiling hysteresis, (ii) augmentation of nucleate boiling heat transfer coefficients by up to an order of magnitude. These effects were also observed in electrically enhanced boiling of Freon/oil mixtures. A new analytical model is described whereby EHD nucleate boiling data from previous studies (employing simple apparatus comprising heated wires with concentric cylinder electrodes) have been correlated for the first time using the concept of an electrical influence number. This dimensionless parameter is based upon the relationship between applied electric field intensity and changes in bubble departure diameter at a heat transfer surface.

1987 ◽  
Vol 109 (2) ◽  
pp. 388-391 ◽  
Author(s):  
E. M. Sparrow ◽  
M. A. Ansari

Measurements were made of the combined natural convection and radiation heat transfer from a horizontal finned tube situated in a vertical channel open at the top and bottom. In one set of experiments, both walls of the channel were heavily insulated, while in a second set of experiments, one of the insulated walls was replaced by an uninsulated metallic sheet. In general, the heat transfer coefficients were found to be lower with the metal wall in place, but only moderately. With the finned tube situated at the bottom of the channel, the differences in the heat transfer coefficients corresponding to the two types of walls were only a few percent. When the tube was positioned at the mid-height of the channel, larger differences were encountered, but in the practical range of Rayleigh numbers, the differences did not exceed 5 percent.


1962 ◽  
Vol 84 (4) ◽  
pp. 365-371 ◽  
Author(s):  
H. S. Swenson ◽  
J. R. Carver ◽  
G. Szoeke

In large, subcritical pressure, once-through power boilers heat is transferred to steam and water mixtures ranging in steam quality from zero per cent at the bottom of the furnace to 100 per cent at the top. In order to provide design information for this type of boiler, heat-transfer coefficients for forced convection film boiling were determined for water at 3000 psia flowing upward in a vertical stainless-steel tube, AISI Type 304, having an inside diameter of 0.408 inches and a heated length of 6 feet. Heat fluxes ranged between 90,000 and 180,000 Btu/hr-sq ft and were obtained by electrical resistance heating of the tube. The operation of the experimental equipment was controlled so that nucleate boiling, transition boiling, and stable film boiling occurred simultaneously in different zones of the tube. The film boiling data were correlated with a modified form of the equation Nu = a a(Re)m(Pr)n using steam properties evaluated at inside surface temperature. Results of a second series of heat-transfer tests with tubes having a helical rib on the inside surface showed that nucleate boiling could be maintained to much higher steam qualities with that type of tube than with a smooth-bore tube.


1981 ◽  
Vol 103 (4) ◽  
pp. 705-714 ◽  
Author(s):  
J. C. Biery

A new method is presented to predict heat transfer coefficients for gas flow normal to smooth and finned tube tanks with triangular pitch. A transformation from the actual tube bank to an equivalent equilateral triangular pitch infinite smooth tube bank (ETP-I-STB) is made. A function of Ch(Ch = NSTNPR2/3NRe0.4) versus (Xt D0)Δ, ratio of transverse pitch to tube diameter for the ETP-I-STB, was developed. The Ch for the equivalent ETP-I-STP then applies to the actual tube bank. The method works with circular finned tubes, smooth tubes, continuous finned tubes, and segmented finned tubes with any triangular pitch. Also, fair predictions were made for in-line tubes with high Reynolds numbers.


2003 ◽  
Vol 125 (6) ◽  
pp. 1087-1095 ◽  
Author(s):  
H. Louahlia-Gualous ◽  
P. K. Panday ◽  
E. A. Artioukhine

This article treats the local heat transfer for nucleate pool boiling around the cylinder using the inverse heat conduction analysis. The physical model considers a half section of a cylinder with unknown surface temperature and heat flux density. The iterative regularization and the conjugate gradient methods are used for solving the inverse analysis. The local Nusselt number profiles for nucleate pool boiling are presented and analyzed for different electric heat. The mean Nusselt number estimated by IHCP is closed with the measured values. The results of IHCP are compared to those of Cornewell and Houston (1994), Stephan and Abdelsalam (1980) and Memory et al. (1995). The influence of the error of the measured temperatures and the error in placement of the thermocouples are studied.


1997 ◽  
Vol 119 (1) ◽  
pp. 142-151 ◽  
Author(s):  
Shou-Shing Hsieh ◽  
Chun-Jen Weng

Measurements of pool-boiling heat transfer coefficients in distilled water and R-134a/oil mixtures with up to 10 percent (by weight) miscible EMKARATE RL refrigeration lubricant oil are extensively studied for a smooth tube and four rib-roughened tubes (rib pitch 39.4 mm, rib height 4 mm, rib width 15 mm, number of rib element 8, rib angle 30 deg–90 deg). Boiling data of pure refrigerants and oil mixtures, as well as the influences of heat flux level on heat transfer coefficient, are presented and discussed. A correlation is developed for predicting the heat transfer coefficient for both pure refrigerants and refrigerant-oil mixtures. Moreover, boiling visualizations were made to broaden our fundamental understanding of the pool boiling heat transfer mechanism for rib roughened surfaces with pure refrigerants and refrigerant-oil mixtures.


1999 ◽  
Author(s):  
K. N. Rainey ◽  
S. M. You

Abstract The present research is an experimental study of “double enhancement” behavior in pool boiling from heater surfaces simulating microelectronic devices immersed in saturated FC-72 at atmospheric pressure. The term “double enhancement” refers to the combination of two different enhancement techniques: a large-scale area enhancement (square pin fin array) and a small-scale surface enhancement (microporous coating). Fin lengths were varied from 0 (flat surface) to 8 mm. Effects of this double enhancement technique on critical heat flux (CHF) and nucleate boiling heat transfer in the horizontal orientation (fins are vertical) are investigated. Results showed significant increases in nucleate boiling heat transfer coefficients with the application of the microporous coating to the heater surfaces. CHF was found to be relatively insensitive to surface microstructure for the finned surfaces except in the case of the surface with 8 mm long fins. The nucleate boiling and CHF behavior has been found to be the result of multiple, counteracting mechanisms: surface area enhancement, fin efficiency, surface microstructure (active nucleation site density), vapor bubble departure resistance, and re-wetting liquid flow resistance.


2000 ◽  
Author(s):  
Edward V. McAssey ◽  
Jinfeng Wu ◽  
Thomas Dougherty ◽  
Bao Wen Yang

Abstract Data are presented for sub-cooled boiling of water in the range of two to four atmospheres. The results show that the sharp increase in heat transfer coefficient associated with nucleate boiling occurs at wall superheats of 20 °C to 30 °C. Comparisons between experimental and predicted heat transfer coefficients are also presented. The two prediction methods examined are the Chen correlation and the Kandlikar correlation.


2004 ◽  
Vol 120 ◽  
pp. 269-276
Author(s):  
M. Maniruzzaman ◽  
R. D. Sisson

Quenching heat treatment in a liquid medium is a very complex heat transfer process. Heat extraction from the part surface occurs through several different heat transfer mechanisms in distinct temperature ranges, namely, film boiling, partial film boiling (i.e. transition), nucleate boiling and convection. The maximum heat transfer occurs during the nucleate boiling stage. Experimental study shows that, the effective surface heat transfer coefficient varies more than two orders of magnitude with the temperature during the quenching. For quenching process simulation, accurate prediction of the time-temperature history and microstructure evolution within the part largely depends on the accuracy of the boundary condition supplied. The heat transfer coefficient is the most important boundary condition for process simulation. This study focuses on creating a database of heat transfer coefficients for various liquid quenchant-metallic alloy combinations through experimentation using three different quench probes. This database is a web-based tool for use in quench process simulation. It provides at-a-glance information for quick and easy analysis and sets the stage for a Decision Support System (DSS) and Data Mining for heat-treating process.


Sign in / Sign up

Export Citation Format

Share Document