Profile Synthesis and Kinematic Analysis of Pure Rolling Contact Gears

1992 ◽  
Vol 114 (2) ◽  
pp. 326-333 ◽  
Author(s):  
M. J. Wagner ◽  
W. F. Ng ◽  
S. G. Dhande

The kinematic analysis of a type of gearing which allows for power transmission between shafts with pure rolling contact is presented. This proposed gearing is helical and exhibits theoretical point contact. Comparisons are made between the proposed gearing and conventional types such as involute gearing and Wildhaber-Novikov circular arc gearing. The analysis of the specific proposed profile includes derivation of surface normal, pressure angle, and surface curvature. Curvatures are used to predict possible interference between mating gear surfaces. A curve showing allowable values for the tooth profile parameters is included.

Author(s):  
Ahmed M. M. El-Bahloul ◽  
Yasser Z. R. Ali

The main objective of this paper is to study the effect of gear geometry on the discharge of gear pumps. We have used gears of circular-arc tooth profile as gear pumps and have compared between these types of gearing and spur, helical gear pumps according to discharge. The chosen module change from 2 to 16 mm, number of teeth change from 8 to 20 teeth, pressure angle change from 10 to 30 deg, face width change from 20 to 120 mm, correction factor change from −1 to 1, helix angle change from 5 to 30 deg, and radii of curvature equal 1.4, 1.5, 2, 2.5, 2.75, and 3m are considered. The authors deduced that the tooth rack profile with radius of curvature equal 2.5, 2.75, 3m for all addendum circular arc tooth and convex-concave tooth profile, and derived equations representing the tooth profile, and calculated the points of intersections between curves of tooth profile. We drive the formulas for the volume of oil between adjacent teeth. Computer program has been prepared to calculate the discharge from the derived formulae with all variables for different types of gear pumps. Curves showing the change of discharge with module, number of teeth, pressure angle, face width, correction factor, helix angle, and radius of curvature are presented. The results show that: 1) The discharge increases with increasing module, number of teeth, positive correction factor, face width and radius of curvature of the tooth. 2) The discharge increases with increasing pressure angle to a certain value and then decreases with increasing pressure angle. 3) The discharge decreases with increasing helix angle. 4) The convex-concave circular-arc gears gives discharge higher than that of alla ddendum circular arc, spur, and helical gear pumps respectively. 5) A curve fitting of the results are done and the following formulae derived for the discharge of involute and circular arc gear pumps respectively: Q=A1bm2z0.895e0.065xe0.0033αe−0.0079βQ=A2bm2z0.91ρ10.669e−0.0047β


Author(s):  
Ahmed M. M. El-Bahloul ◽  
Yasser Z. R. Ali

The main objective of this paper is to study the effect of gear geometry on the oil pressure of gear pumps. We have used gears of circular-arc tooth profile as gear pumps and have compared between these types of gearing and spur, helical gear pumps according to pressure. The chosen module change from 2 to 16 mm, number of teeth change from 8 to 20 teeth, pressure angle change from 10 to 30 deg, face width change from 20 to 120 mm, correction factor change from −1 to 1, helix angle change from 5 to 30 deg and radii of curvatures equal 1.4, 1.5, 2, 2.5, 2.75, and 3m are considered. The authors deduced that the tooth rack profile with radius or curvature equal 2.5, 2.75, 3m for all- addendum circular arc tooth and convex-concave tooth profile, and derived equations of pressure difference for spur, helical, and circular- are gear pumps. Computer program has been prepared to calculate the pressure from the derived formulae with all variables for different types of gear pumps. Curves showing the change of pressure with module, number of teeth, pressure angle, face width, correction factor, helix angle, and radius of curvature are presented. The results show that: 1) Pressure increases with increasing helix angle. 2) Pressure decreases with increasing face width, number of teeth, positive correction factor, module, pressure angle and radius of curvature of the tooth. 3) The all- addendum circular-arc gears generates pressure higher than helical, convex-concave and spur gear pumps. 4) A curve fitting is done for all variables with pressure and the following formulae derived for the pressure: P=A3b−0.943z−1.175m−2.1β0.175e−0.61xe−0.0048αP=A4b−1z−1.34m−2β0.119ρ1−0.393 These formulae represent simple tool for the designer to calculate the pressure of involute and circular arc gear pumps.


2012 ◽  
Vol 152-154 ◽  
pp. 1595-1600 ◽  
Author(s):  
Chin Yu Wang

The two gears of the double circular-arc helical gear is a mesh of a concave/convex combination. Because the curvature is close to each other, the strength also increased and thus, it is often used in heavily-loaded workplaces. The national standard for double circular-arc helical gear (ex., GB12759-91) is based on the size of the gear module to design its tooth profile. This shows that tooth geometric-related designs are quite complicated. If the effect of the different pressure angle parameter is considered, we would be unable to conduct relevant studies for the original standard formula with a double circular-arc helical gear set at a pressure angle of 24°. Firstly, this paper would redefine a new double circular-arc helical gear according to the discontinuousness tooth profile molded line of the double circular-arc helical gear and unchangeable pressure angle and explain the improvements in the design and stress analysis of the tooth especially since the double circular-arc helical gear has no limitation in the minimum number of teeth. Thus, the decrease in the driving gears’ number of module and can further increase the reduction gear ratio. For heavily-loaded planetary gear reducer, it’s quite obvious in the miniaturizing and high torque superiority. This paper also used certain winch’s speed reducer as example to explain that the change of the pressure angle can reduce contact stress by 3%~40% and also enhances the torque ability by 3%~40%.


2021 ◽  
Vol 12 (2) ◽  
pp. 923-932
Author(s):  
Rui Guo ◽  
Yongqiao Wei ◽  
Yongping Liu ◽  
Dawei Li ◽  
Dong Yang ◽  
...  

Abstract. The variable hyperbolic circular-arc-tooth-trace (VH-CATT) cylindrical gear is a new type of gear. In order to research the contact characteristics of the VH-CATT cylindrical gear, tooth surface mathematical models of this kind of gear pair are derived based on the forming principle of the rotating double-edged cutting method with great cutter head in this regard. Then, according to the differential geometry theory and Hertz theory, the formula of the induced normal curvature and equation of the contact ellipse are derived based on the condition of continuous tangency of two meshing surfaces, which proves that the contact form of VH-CATT cylindrical gear is point contact. The present work establishes analytical solutions to research the effect of different parameters for the contact characteristic of the VH-CATT cylindrical gear by incorporating elastic deformation on the tooth surface, which have shown that the module, tooth number and cutter radius have a crucial effect on the induced normal curvature and contact ellipse of the VH-CATT cylindrical gear in the direction of tooth trace and tooth profile. Moreover, a theoretical analysis solution, a finite element analysis and the gear tooth contact pattern are carried out to verify the correctness of the computerized model and to investigate the contact type of the gear; it is verified that the contact form on the concave surface of the driving VH-CATT cylindrical gear rotates from dedendum at the heel to the addendum at toe and is an instantaneous oblique ellipse due to elastic deformation of the contact tooth profile, and the connecting line of the ellipse center is the contact trace path. It is indicated that the research results are beneficial for research on tooth break reduction, pitting, wear resistance and fatigue life improvement of the VH-CATT cylindrical gear. The results also have a certain reference value for development of the VH-CATT cylindrical gear.


2015 ◽  
Vol 236 ◽  
pp. 26-30 ◽  
Author(s):  
Michał Batsch ◽  
Tadeusz Markowski ◽  
Wojciech Homik

Paper presents the method for obtaining maximum contact pressure of Novikov gears. Described surface strength calculation method is based on Hertz theory of two bodies being in point contact. What’s more the influence of gear position errors on maximum contact stresses has been presented. Also the comparison of Hertz stresses for Novikov and involute gears has been made.


2013 ◽  
Vol 579-580 ◽  
pp. 300-304 ◽  
Author(s):  
Lian Xia ◽  
Da Zhu Li ◽  
Jiang Han

Elliptic family gears are commonly used in non-circular gears, which include elliptic gear, high-order gear, elliptic deformed gear and high-order deformed gear, thereinto high-order deformed gear can include the elliptic family gears through adjust its order and deformed coefficient. Because non-circular gear has different tooth profile in different position of pitch curve and there is difference in the left and right tooth profile of the same gear tooth, thus the CAD modeling of non-circular gear is difficult for these characteristics; but the precise model of non-circular gear has important significance to the realization of numerical control machining, kinematic simulation and relevant mechanical analysis. This paper deduce the corresponding pure rolling mathematical model based on the pure rolling contact theory that cylindrical gear and non-circular gear mesh in the end face, and realize the CAD modeling of non-circular straight and helical gears by letting the cylindrical gear and non-circular gear make solid geometry operation, which is suitable for pitch curve with convex and concave. The non-circular gear shaping methods with equal polar and equal arc length are simulated by setting different discrete polar angles, and the transmission ratio curve and the angular acceleration curve of driven gear are get through the kinematic simulation of gear pair, which realize the transmission performance analysis of elliptic family gear pair. The above research results can be applied to the modeling and kinematic performance analysis of other non-circular gears.


Author(s):  
Hai-zhou Huang ◽  
Xi-chuan Niu ◽  
Xiao-yang Yuan

To investigate the thermal EHL (elastohydrodynamic lubrication) in point contact transmission, a model considering the two-dimensional surface velocity of tooth face and the running-in is proposed. The numerical solutions for pressure, temperature and film thickness distribution in the contact zone are obtained by solving equations including the Reynolds, Energy and the elastic displacement with variable dimension meshing method. The model was used to study the point contact transmission of the circular arc gear in a windlass. The main results show that it is pure rolling along the direction of tooth width, and the rolling speed plays a leading role in improving the lubricating performance and transmission efficiency of circular arc gear. The squeeze film effect makes the pressure peak tend to be gentle and the film thickness increase slightly.


Sign in / Sign up

Export Citation Format

Share Document