Residual Vibration Reduction Using Vector Diagrams to Generate Shaped Inputs

1994 ◽  
Vol 116 (2) ◽  
pp. 654-659 ◽  
Author(s):  
W. Singhose ◽  
W. Seering ◽  
N. Singer

This paper describes a method for limiting vibration in flexible systems by shaping the input to the system. Unlike most previous input shaping strategies, this method does not require a precise system model or lengthy numerical computation; only estimates of the system natural frequency and damping ratio are required. The effectiveness of this method when there are errors in the system model is explored and quantified. Next, an algorithm is presented, which, given an upper bound on acceptable residual vibration amplitude, determines a shaping strategy that is insensitive to errors in the estimate of the natural frequency. Finally, performance predictions are compared to hardware experiments.

2011 ◽  
Vol 18 (1) ◽  
pp. 132-140 ◽  
Author(s):  
Hakan Yavuz ◽  
Selçuk Mıstıkoğlu ◽  
Sadettin Kapucu

2004 ◽  
Vol 127 (4) ◽  
pp. 307-314 ◽  
Author(s):  
Jason Lawrence ◽  
William Singhose ◽  
Keith Hekman

Fast and accurate point-to-point motion is a common operation for industrial machines, but vibration will frequently corrupt such motion. This paper develops commands that can move machines without vibration, even in the presence of Coulomb friction. Previous studies have shown that input shaping can be used on linear systems to produce point-to-point motion with no residual vibration. This paper extends command-shaping theory to nonlinear systems, specifically systems with Coulomb friction. This idea is applied to a PD-controlled mass with Coulomb friction to ground. The theoretical developments are experimentally verified on a solder cell machine. The results show that the new commands allow the proportional gain to be increased, resulting in reduced rise time, settling time, and steady-state error.


2014 ◽  
Vol 490-491 ◽  
pp. 997-1002
Author(s):  
Çağlar Conker ◽  
Hakan Yavuz ◽  
Sadettin Kapucu ◽  
Mustafa Kaan Baltacioğlu ◽  
Hüseyi̇n Turan Arat ◽  
...  

Input shaping is a feedforward control technique for improving the settling time and positioning accuracy, while minimizing residual vibrations. Shaped command profiles are generated by convolving a sequence of impulses. To design an input shaping controller, estimates of the system natural frequency and damping ratio are required. However, real systems cannot be modeled exactly, making the robustness to modeling errors an important consideration. Many robust input shapers have been developed, but robust shapers typically have longer durations that slow the system response. This creates a compromise between shaper robustness and rise time. This paper analyses the compromise between shaper duration and robustness for several robust input shapers


2012 ◽  
Vol 134 (12) ◽  
Author(s):  
Brice Pridgen ◽  
William Singhose

Polynomial profiles can be used as reference commands to limit induced vibration in flexible systems. Due to their ease of design and low-pass filtering effects, polynomial profiles are often found in cam-follower systems. Polynomial profiles have also been used as smooth reference commands for automated machines. However, despite extensive work to develop and improve such profiles, inherent tradeoffs still exist between induced vibration, rise time, and ease of design. Input shaping is an alternative method for generating motion commands that reduce residual vibration. This paper compares polynomial profiles to input-shaped commands for the application of reducing vibration in flexible systems. Analyses using Laplace transforms reveal that input shapers suppress vibration at regularly spaced frequencies. However, polynomial profiles do not share this property. Simulations and experimental results show that input shaping improves rise time and reduces residual vibration in comparison to polynomial profiles.


Author(s):  
Chul-Goo Kang

The robustness of residual vibration control, such as input shaping, has conventionally been evaluated from the ratio of residual vibration amplitude with input shaping to that without input shaping at the time of the final impulse. However, in that robustness evaluation, vibration-suppressing speed due to each residual vibration control has not been considered, which is also an important aspect of residual vibration control. In this paper, a performance measure including robustness to modeling errors and the effect of vibration-suppressing speed is defined, and the validity of the performance measure is demonstrated by simulations and experimental works.


2015 ◽  
Vol 23 (1) ◽  
pp. 464 ◽  
Author(s):  
Jeong Il Mun ◽  
Taeyong Jo ◽  
Taiwook Kim ◽  
Heui Jae Pahk

Author(s):  
Mais Ghassoun ◽  
Ali Algharrash ◽  
Reem Alsehnawi

The Dynamic characteristics such as damping ratio and natural frequency are an important indicator for predicting the dynamic behavior of bridges, but it is customary during the design that the designer assess the dynamic properties of the dynamic analysis because it is very difficult to determine the damping of the origin before construction and damping is taken as a predetermined constant value independent of the response amplitude and frequency of the structure. In the dynamic analysis of constructions design some experimental research has been concerned with the determination of dynamic structural properties and their relationship with the response amplitude experimentally, but the changes in dynamic properties with vibration amplitude has never been taken During dynamic analysis, further analytical treatments and computer modeling were required to study different cases based on the experimental results available by simulating them with a computer model. Dynamic characteristics are very essential to accurately determine the dynamic response, and it is necessary to study the effect of changes of the actual dynamic characteristics of bridges, which were determined by measuring their vibration in the results of dynamic analysis and comparing them with results that do not take into account the changes of dynamic properties and with laboratory results in order to assess the role of. Dynamic analysis inputs in simulating vibrations by monitoring their responses. As a result, it was found that the dynamic properties are independent of the shape of the external exactions. Also, it was concluded that relationships express the change of dynamic properties in terms of vibration amplitudes. And Similar reliance of the dynamic characteristics to the vibration amplitude is confirmed for the pier model, where the increase of the amplitude of the acceleration is accompanied by a decrease in the natural frequency, and an increase in the damping ratio is obvious. Before choosing design values when considering the dynamic characteristics of a structure, we need to give unique concentration to the predictable vibration amplitudes. Dynamic characteristics changes during dynamic analysis should be considered to produce analytical results that simulate experimental results and are closer to reality.


Author(s):  
Withit Chatlatanagulchai ◽  
Nitirong Pongpanich ◽  
Pisai Yaemprasuan

This paper presents a novel and improved technique in manual control of flexible systems. Flexible systems, when subject to a rapid movement commanded by a human operator, exhibit severe oscillation, causing low positioning accuracy, high fatigue to the human operator, and unsafe accidents. Input shaping filter was proposed to reduce this oscillation by using the destructive interference principle where impulse responses cancel one another resulting in zero residual vibration. Recently, the input shaping filter was placed inside the feedback loop, so-called closed-loop signal shaping, to assist with the manual control of the flexible systems. The vibration was successfully suppressed. However, the input shaping filter also introduced time delays in the feedback loop, which limit the performance of the human operator. This paper offers a breakthrough idea by introducing an anti-delay algorithm called Smith predictor inside the feedback loop. When the plant model is perfect, it can be shown that the Smith predictor can entirely remove the effect of time delay from the feedback loop; therefore, improving the performance of the human operator. Experiments on manual control of a two-link pendulum on a gantry crane show the effectiveness of the proposed algorithm. The human operator was able to move the two-link pendulum with minimum residual vibration. Comparing to the currently world-best technique, the proposed technique could achieve faster maneuvering time, higher accuracy, and with less subjective difficulty.


Robotica ◽  
2002 ◽  
Vol 20 (5) ◽  
pp. 553-561 ◽  
Author(s):  
Ki-Seong Lee ◽  
Youn-sik Park

SummaryThis paper presents a modified input shaping method to reduce the motion-induced vibration of a linear time-varying system after a rest-to-rest motion. Shaping parameters were obtained using the concept of modal-filtered impulse response. The conventional shaping method can be said just a special case of the proposed shaping method. The effectiveness of this proposing method was checked using some examples of both moderate and considerably fast time-varying systems. With a rest-to-rest motion control of a two-link flexible manipulator, this study also demonstrates that this method can be expanded to nonlinear cases.


Sign in / Sign up

Export Citation Format

Share Document