Effect of Hydrodynamic Thrust Bearings on Lateral Shaft Vibrations

1991 ◽  
Vol 113 (4) ◽  
pp. 811-817 ◽  
Author(s):  
N. Mittwollen ◽  
T. Hegel ◽  
J. Glienicke

A computational method for the prediction of static and dynamic characteristic data of tilting pad and fixed pad thrust bearings for high surface velocities and high thermal loads is developed and verified. Furthermore, a convenient model is presented, which allows the determination of the dynamic coefficients for the gyrating movement of the thrust collar, where it is sufficient using the purely axial dynamic single pad coefficients only. Introducing these coefficients into an accordingly modified rotor dynamics program, the lateral vibrations of a high speed rotor with sliding bearings are calculated and a considerable effect of the thrust bearings is shown. These theoretical results are also verified experimentally through vibration measurements at a high speed rotor test rig.

1961 ◽  
Vol 83 (2) ◽  
pp. 169-178 ◽  
Author(s):  
B. Sternlicht ◽  
J. C. Reid ◽  
E. B. Arwas

This is the first of three papers on the results of a recently completed study of the performance of tilting pad thrust bearings. It describes a method of analysis that was worked out for these bearings, which includes viscosity variations in the fluid film and an approximate calculation of the pad deflections caused by the hydrodynamic pressures. Equilibrium of moments is satisfied, laminar and adiabatic conditions are assumed, and the lubricant is incompressible. The two subsequent papers of this series will describe: (a) The results of an analysis which includes a more rigorous determination of pad deflections caused by hydrodynamic pressures and thermal gradients. (b) A comparison of analytical results with experimental data obtained in full-scale bearing tests.


1976 ◽  
Vol 98 (1) ◽  
pp. 73-79 ◽  
Author(s):  
J. W. Capitao ◽  
R. S. Gregory ◽  
R. P. Whitford

A comparison of the high-speed performance characteristics of tilting-pad, self-equalizing type thrust bearings through two independent full-scale programs is reported. This paper presents experimental data on centrally pivoted, 6-pad, 267-mm (10 1/2-in.) and 304-mm (12-in.) O.D. bearings operating at shaft speeds up to 14000 rpm and bearing loads ranging up to 2.76 MPa (400 psi). Data presented demonstrate the effects of speed and loading on bearing power loss and metal temperatures. Included is a discussion of optimum oil supply flow rate based upon considerations of bearing pad temperatures and power loss values.


Author(s):  
M. K. Bielec ◽  
A. J. Leopard

The effect on flooded tilting pad thrust bearing performance of a number of external variables is examined. At sliding speeds between 10 and 100 m/s, and for specific pressure between 15 bar and 55 bar, measurements were made of oil film thickness, bearing temperature, and power loss for various oil inlet systems, oil quantities, housing pressures, and degrees of misalignment. Power consumption in high-speed thrust bearings can be safely reduced by the use of directed lubrication with a drained casing, bearing temperature being reduced and oil film thickness increased.


Author(s):  
Peter H. Wiebe ◽  
Ann Bucklin ◽  
Mark Benfield

This chapter reviews traditional and new zooplankton sampling techniques, sample preservation, and sample analysis, and provides the sources where in-depth discussion of these topics is addressed. The net systems that have been developed over the past 100+ years, many of which are still in use today, can be categorized into eight groups: non-opening/closing nets, simple opening/closing nets, high-speed samplers, neuston samplers, planktobenthos plankton nets, closing cod-end samplers, multiple net systems, and moored plankton collection systems. Methods of sample preservation include preservation for sample enumeration and taxonomic morphological analysis, and preservation of samples for genetic analysis. Methods of analysis of zooplankton samples include determination of biomass, taxonomic composition, and size by traditional methods; and genetic analysis of zooplankton samples.


Lubricants ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 18
Author(s):  
Eckhard Schüler ◽  
Olaf Berner

In high speed, high load fluid-film bearings, the laminar-turbulent flow transition can lead to a considerable reduction of the maximum bearing temperatures, due to a homogenization of the fluid-film temperature in radial direction. Since this phenomenon only occurs significantly in large bearings or at very high sliding speeds, means to achieve the effect at lower speeds have been investigated in the past. This paper shows an experimental investigation of this effect and how it can be used for smaller bearings by optimized eddy grooves, machined into the bearing surface. The investigations were carried out on a Miba journal bearing test rig with Ø120 mm shaft diameter at speeds between 50 m/s–110 m/s and at specific bearing loads up to 4.0 MPa. To investigate the potential of this technology, additional temperature probes were installed at the crucial position directly in the sliding surface of an up-to-date tilting pad journal bearing. The results show that the achieved surface temperature reduction with the optimized eddy grooves is significant and represents a considerable enhancement of bearing load capacity. This increase in performance opens new options for the design of bearings and related turbomachinery applications.


Author(s):  
JC Atwal ◽  
RK Pandey

Performance parameters such as power loss, minimum film thickness, and maximum oil temperature of the sector-shaped tilting pad thrust bearings employing the new micro-structural geometries on pad surfaces have been investigated. The lubrication equation incorporating the mass-conservation issue is discretized using the finite element method and the solution of resulting algebraic equations is obtained employing a Newton-Schur method. The pad equilibrium in the analysis is established using the Newton-Raphson and Braydon methods. The influence of attributes of micro-structures such as depth, circumferential and radial positioning extents have been explored on the performance behaviours. It is found that with the new micro-structured pad surfaces, the performance parameters significantly improved in comparison to conventional plain and conventional rectangular pocketed pads.


Sign in / Sign up

Export Citation Format

Share Document