scholarly journals Turbulence Measurements of High Shear Flow Fields in a Turbomachine Seal Configuration

1993 ◽  
Vol 115 (4) ◽  
pp. 670-677 ◽  
Author(s):  
G. L. Morrison ◽  
R. E. DeOtte ◽  
H. D. Thames

The mean velocity and Reynolds stress tensor throughout a whirling annular seal are presented. The data were collected with a three-dimensional laser Doppler velocimeter using phase averaging. Two axial flow conditions (Re = 12,000 and 24,000) were studied at one shaft speed (Ta = 6,600). The eccentricity and whirl ratios were 50 percent and 100 percent, respectively. There is a region of high axial momentum at the inlet on the pressure side of the clearance that migrates around the seal to the suction side at the exit. The normalized axial momentum in this region is higher in the low Reynolds number case due to an axial recirculation zone that occurs on the suction side of the rotor at the inlet. The recirculation zone does not occur in the high Reynolds number case. At both Reynolds numbers there is a recirculation zone on the rotor surface in the pressure side of the inlet. This recirculation zone extends from 20 to 200 deg past the rotor zenith in the tangential direction, and is one third of a clearance wide radially. The high Reynolds number circulation zone is 1.5 mean clearances long, while the low Reynolds number zone extends two mean clearances downstream. When compared to previous studies, it is apparent that the tangential momentum is no greater for a seal with whirl than for one without if other parameters are constant. Areas of high tangential momentum occur in the clearance where the axial momentum is low. Average exit plane tangential velocities in the low Reynolds number case are 1.5 times greater than those in the other flow case. These results are in general agreement with predictions made by other investigators.

Author(s):  
Ishfaq Fayaz ◽  
Syeeda Needa Fathima ◽  
Y.D. Dwivedi

The computational investigation of aerodynamic characteristics and flow fields of a smooth owl-like airfoil without serrations and velvet structures.The bioinspired airfoil design is planned to serve as the main-wing for low-reynolds number aircrafts such as (MAV)micro air vechiles.The dependency of reynolds number on aerodynamics could be obtained at low reynolds numbers.The result of this experiment shows the owl-like airfoil is having high lift performance at very low speeds and in various wind conditions.One of the unique feature of owl airfoil is a separation bubble on the pressure side at low angle of attack.The separation bubble changes location from the pressure side to suction side as the AOA (angle of attack) increases. The reynolds number dependancy on the lift curve is insignificant,although there’s difference in drag curve at high angle of attacks.Eventually, we get the geometric features of the owl like airfoil to increase aerodynamic performance at low reynolds numbers.


Author(s):  
Alberto Di Sante ◽  
Rene´ Van den Braembussche

The impact of Coriolis forces on low Reynolds number decelerating flows is studied by means of time resolved Particle Image Velocimetry in a 6° diverging channel. Measurements are made with a high speed camera and a continuous light source rotating at the same speed as the rotating channel. This allows a direct and accurate recording of the time varying relative velocity. The Reynolds number can be varied from 3 000 to 30 000 in combination with a change of rotation number between 0.0 and 0.33. These values are characteristic for the flow in the blade passage of centrifugal impellers used in micro gasturbines. Increasing rotation stabilizes the flow on the suction side. The peak turbulence intensity shifts away from the wall with a small increase of its amplitude. The turbulence intensity on the pressure side increases its peak value and concentrates closer to the wall when increasing rotation. Instantaneous flow field analyses indicate that elongated vortical structures characterize the boundary layer in the stationary case and on the pressure side of the rotating channel. Isotropic vortices develop relatively distant from the wall on the suction side. Their position and size are tracked in time by means of a wavelet analysis.


2008 ◽  
Vol 609 ◽  
pp. 195-220 ◽  
Author(s):  
J. C. KLEWICKI ◽  
P. J. A. PRIYADARSHANA ◽  
M. M. METZGER

The fluctuating wall pressure and its gradients in the plane of the surface were measured beneath the turbulent boundary layer that forms over the salt playa of Utah's west desert. Measurements were acquired under the condition of near-neutral thermal stability to best mimic the canonical zero-pressure-gradient boundary-layer flow. The Reynolds number (based on surface-layer thickness, δ, and the friction velocity, uτ) was estimated to be 1 × 106 ± 2 × 105. The equivalent sandgrain surface roughness was estimated to be in the range 15≤ks+≤85. Pressure measurements acquired simultaneously from an array of up to ten microphones were analysed. A compact array of four microphones was used to estimate the instantaneous streamwise and spanwise gradients of the surface pressure. Owing to the large length scales and low flow speeds, attaining accurate pressure statistics in the present flow required sensors capable of measuring unusually low frequencies. The effects of imperfect spatial and temporal resolution on the present measurements were also explored. Relative to pressure, pressure gradients exhibit an enhanced sensitivity to spatial resolution. Their accurate measurement does not, however, require fully capturing the low frequencies that are inherent and significant in the pressure itself. The present pressure spectra convincingly exhibit over three decades of approximately −1 slope. Comparisons with low-Reynolds-number data support previous predictions that the inner normalized wall pressure variance increases logarithmically with Reynolds number. The wall pressure autocorrelation exhibits its first zero-crossing at an advected length that is between one tenth and one fifth of the surface-layer thickness. Under any of the normalizations investigated, the present surface vorticity flux intensity values are difficult to reconcile with low-Reynolds-number data trends. Inner variables, however, do yield normalized flux intensity values that are of the same order of magnitude at low and high Reynolds number. Spectra reveal that even at high Reynolds number, the primary contributions to the pressure gradient intensities occur over a relatively narrow frequency range. This frequency range is shown to be consistent with the scale of the sublayer pocket motions. In accord with low-Reynolds-number data, the streamwise pressure gradient signals at high Reynolds number are also characterized by statistically significant pairings of opposing sign fluctuations.


1975 ◽  
Vol 69 (1) ◽  
pp. 73-95 ◽  
Author(s):  
Dennis K. Mclaughlin ◽  
Gerald L. Morrison ◽  
Timothy R. Troutt

An experimental investigation of the instability and the acoustic radiation of the low Reynolds number axisymmetric supersonic jet has been performed. Hot-wire measurements in the flow field and microphone measurements in the acoustic field were obtained from different size jets at Mach numbers of about 2. The Reynolds number ranged from 8000 to 107000, which contrasts with a Reynolds number of 1·3 × 106for similar jets exhausting into atmospheric pressure.Hot-wire measurements indicate that the instability process in the perfectly expanded jet consists of numerous discrete frequency modes around a Strouhal number of 0·18. The waves grow almost exponentially and propagate downstream at a supersonic velocity with respect to the surrounding air. Measurements of the wavelength and wave speed of theSt= 0·18 oscillation agree closely with Tam's theoretical predictions.Microphone measurements have shown that the wavelength, wave orientation and frequency of the acoustic radiation generated by the dominant instability agree with the Mach wave concept. The sound pressure levels measured in the low Reynolds number jet extrapolate to values approaching the noise levels measured by other experimenters in high Reynolds number jets. These measurements provide more evidence that the dominant noise generation mechanism in high Reynolds number jets is the large-scale instability.


2013 ◽  
Vol 725 ◽  
pp. 216-261 ◽  
Author(s):  
A. Mashayek ◽  
W. R. Peltier

AbstractMotivated by the importance of diapycnal mixing parameterizations in large-scale ocean general circulation models, we provide a detailed analysis of high-Reynolds-number mixing in density stratified shear flows which constitute an archetypical example of the small-scale physical processes occurring in the oceanic interior that control turbulent diffusion. Our focus is upon the issue as to whether the route to fully developed turbulence in the stratified mixing layer is in any significant way determinant of diapycnal mixing efficiency as represented by an effective turbulent diffusivity. We characterize different routes to fully developed turbulence by the nature of the secondary instabilities through which a primary Kelvin–Helmholtz billow executes the transition to this state. We then demonstrate that different mechanisms of turbulence transition characterized in these different transition mechanisms lead to considerably different values for the efficiency of diapycnal mixing and also for the effective vertical flux of buoyancy. We show that the widely employed value of 0.15–0.2 for the efficiency of mixing in shear-induced stratified turbulence based upon both laboratory measurements and similarly low-Reynolds-number numerical simulations may be too low for the high-Reynolds-number regime characteristic of geophysical flows. Our results show that the mixing efficiency tends to a value of approximately $1/ 3$ for sufficiently large Reynolds number at an intermediate value of 0.12 for the Richardson number. This is in agreement with a theoretical predictions of Caulfield, Tang and Plasting (J. Fluid Mech., vol. 498, 2004, pp. 315–332) for the asymptotic value of mixing efficiency in stratified Couette flows. In the high-Reynolds-number regime, mixing efficiency is shown to vary over a considerable range during the course of a particular shear-induced mixing event. We explain this variation on the basis of a detailed examination of the underlying dynamics. Since values in the range 0.15–0.2 for mixing efficiency have been extensively employed to infer an effective diffusivity from ocean microstructure measurements and also in energy balance analyses of the requirements of the global ocean circulation, our findings have potentially important implications for large-scale ocean modelling. We also quantify the errors introduced by employing the Osborn (J. Phys. Oceanogr., vol. 10, 1980, pp. 83–89) formula along with an efficiency of 0.15 to infer values for effective diffusivity, and explain the logical underpinnings of this conclusion. One of the more important aspects of this work from the perspective of our theoretical understanding of stratified turbulence is the demonstration that the inverse cascade of energy, which is facilitated by the vortex-merging process that is typical of laboratory experiments and of the low-Reynolds-number simulations of shear flow evolution, is strongly suppressed by increase of the Reynolds number to values typical of geophysical flows. Based on this finding, the application of results based on low-Reynolds-number (numerical or laboratory) experiments to high-Reynolds-number geophysical shear flows needs to be reconsidered.


Author(s):  
M.P. Uthra ◽  
A. Daniel Antony

Most admirable and least known features of low Reynolds number flyers are their aerodynamics. Due to the advancements in low Reynolds number applications such as Micro Air vehicles (MAV), Unmanned Air Vehicles (UAV) and wind turbines, researchers’ concentrates on Low Reynolds number aerodynamics and its effect on aerodynamic performance. The Laminar Separation Bubble (LSB) plays a deteriorating role in affecting the aerodynamic performance of the wings. The parametric study has been performed to analyse the flow around cambered, uncambered wings with different chord and Reynolds number in order to understand the better flow characteristics, LSB and three dimensional flow structures. The computational results are compared with experimental results to show the exact location of LSB. The presence of LSB in all cases is evident and it also affects the aerodynamic characteristics of the wing. There is a strong formation of vortex in the suction side of the wing which impacts the LSB and transition. The vortex structures impact on the LSB is more and it also increases the strength of the LSB throughout the span wise direction.


1991 ◽  
Vol 230 ◽  
pp. 1-44 ◽  
Author(s):  
Lincoln P. Erm ◽  
Peter N. Joubert

An investigation was undertaken to improve our understanding of low-Reynolds-number turbulent boundary layers flowing over a smooth flat surface in nominally zero pressure gradients. In practice, such flows generally occur in close proximity to a tripping device and, though it was known that the flows are affected by the actual low value of the Reynolds number, it was realized that they may also be affected by the type of tripping device used and variations in free-stream velocity for a given device. Consequently, the experimental programme was devised to investigate systematically the effects of each of these three factors independently. Three different types of device were chosen: a wire, distributed grit and cylindrical pins. Mean-flow, broadband-turbulence and spectral measurements were taken, mostly for values of Rθ varying between about 715 and about 2810. It was found that the mean-flow and broadband-turbulence data showed variations with Rθ, as expected. Spectra were plotted using scaling given by Perry, Henbest & Chong (1986) and were compared with their models which were developed for high-Reynolds-number flows. For the turbulent wall region, spectra showed reasonably good agreement with their model. For the fully turbulent region, spectra did show some appreciable deviations from their model, owing to low-Reynolds-number effects. Mean-flow profiles, broadband-turbulence profiles and spectra were found to be affected very little by the type of device used for Rθ ≈ 1020 and above, indicating an absence of dependence on flow history for this Rθ range. These types of measurements were also compared at both Rθ ≈ 1020 and Rθ ≈ 2175 to see if they were dependent on how Rθ was formed (i.e. the combination of velocity and momentum thickness used to determine Rθ). There were noticeable differences for Rθ ≈ 1020, but these differences were only convincing for the pins, and there was a general overall improvement in agreement for Rθ ≈ 2175.


1995 ◽  
Vol 2 (1) ◽  
pp. 51-58
Author(s):  
P. Tekriwal

The objective of the current modeling effort is to validate the numerical model and improve upon the prediction of heat transfer in rotating systems. Low-Reynolds number turbulence model (without the wall function) has been employed for three-dimensional heat transfer predictions for radially outward flow in a square cooling duct rotating about an axis perpendicular to its length. Computations are also made using the standard and extended high-Reynolds number kturbulence models (in conjunction with the wall function) for the same flow configuration. The results from all these models are compared with experimental data for flows at different rotation numbers and Reynolds number equal to 25,000. The results show that the low-Reynolds number model predictions are not as good as the high-Re model predictions with the wall function. The wall function formulation predicts the right trend of heat transfer profile and the agreement with the data is within 30% or so for flows at high rotation number. Since the Navier-Stokes equations are integrated all the way to wall in the case of low-Re model, the computation time is relatively high and the convergence is rather slow, thus rendering the low-Re model as an unattractive choice for rotating flows at high Reynolds number.The extended k-ε turbulence model is also employed to compute heat transfer for rotating flows with uneven wall temperatures and uniform wall heat flux conditions. The comparison with the experimental data available in literature shows that the predictions on both the leading wall and the trailing wall are satisfactory and within 5-25% agreement.


Author(s):  
Roberto Pacciani ◽  
Michele Marconcini ◽  
Andrea Arnone ◽  
Francesco Bertini

A study of the separated flow in high-lift, low-Reynolds-number cascade, has been carried out using a novel three-equation, transition-sensitive, turbulence model. It is based on the coupling of an additional transport equation for the so-called laminar kinetic energy with the Wilcox k-ω model. Such an approach takes into account the increase of the non-turbulent fluctuations in the pre-transitional and transitional region. Two high-lift cascades (T106C and T108), recently tested at the von Ka´rma´n Institute in the framework of the European project TATMo (Turbulence and Transition Modelling for Special Turbomachinery Applications), were analyzed. The two cascades have different loading distributions and suction side diffusion rates, and therefore also different separation bubble characteristics and loss levels. The analyzed Reynolds number values span the whole range typically encountered in aeroengines low-pressure turbines operations. Several expansion ratios for steady inflow conditions characterized by different freestream turbulence intensities were considered. A detailed comparison between measurements and computations, including bubble structural characteristics, will be presented and discussed. Results with the proposed model show its ability to predict the evolution of the separated flow region, including bubble bursting phenomena, in high-lift cascades operating in LP-turbine conditions.


Author(s):  
Toyotaka Sonoda ◽  
Rainer Schnell ◽  
Toshiyuki Arima ◽  
Giles Endicott ◽  
Eberhard Nicke

In this paper, Reynolds effects on a modern transonic low-aspect-ratio fan rotor (Baseline) and the re-designed (optimized) rotor performance are presented with application to a small turbofan engine. The re-design has been done using an in-house numerical optimization system in Honda and the confirmation of the performance was carried out using DLR’s TRACE RANS stage code, assessed with respect to experimental data obtained from a small scale compressor rig in Honda. The baseline rotor performance is evaluated at two Reynolds number conditions, a high Reynolds condition (corresponding to a full engine scale size) and a low Reynolds number condition (corresponding to the small scale compressor rig size), using standard ISA conditions. The performance of the optimized rotor was evaluated at the low Reynolds number condition. The CFD results show significant discrepancies in the rotor efficiency (about 1% at cruise) between these two points due to the different Reynolds numbers. The optimized rotor’s efficiency is increased compared to the baseline. A unique negative curvature region close to the leading edge on the pressure surface of the optimized rotor is one of the reasons why the optimized rotor is superior to the baseline.


Sign in / Sign up

Export Citation Format

Share Document