Investigation of the Flow at the Exit of an Unshrouded Centrifugal Impeller and Comparison With the “Classical” Jet-Wake Theory

1991 ◽  
Vol 113 (4) ◽  
pp. 654-659 ◽  
Author(s):  
K.-H. Rohne ◽  
M. Banzhaf

L2F measurements of the flow at the exit of modern unshrouded centrifugal impellers with backswept blades yield a much more uniform velocity profile compared to former measurements on impellers with radial blading. Further evaluations show that the “classical” jet-wake theory assuming an isentropic jet and a wake flow congruent with the shape of the blade at the impeller exit needs correction in order to obtain meaningful results when interpreting thermodynamic measurements on centrifugal compressor stages.

1990 ◽  
Author(s):  
K.-H. Rohne ◽  
M. Banzhaf

L2F measurements of the flow at the exit of modern unshrouded centrifugal impellers with backswept blades yield a much more uniform velocity profile compared to former measurements on impellers with radial blading. Further evaluations show that the “classical” jet-wake theory assuming an isentropic jet and a wake flow congruent with the shape of the blade at the impeller exit needs correction in order to obtain meaningful results when interpreting thermodynamic measurements on centrifugal compressor stages.


Author(s):  
Qun Zheng ◽  
Shunlong Liu

Numerical investigations of internal flow field in centrifugal compressor impeller channel are carried out in this paper. Topological analyses of limit streamline pattern are used to interpret the Jet-Wake formation. With such a technique, it can give a clearly description of the wake. And the shape of the wake, the wake onset and wake developing process are depicted in detail. The numerical results also present the internal vortices, secondary flows and their effects on the Jet-Wake pattern formation. The influences of Coriolis force on flow field of the centrifugal impeller are also discussed.


Author(s):  
Ali Pinarbasi ◽  
Mark W. Johnson

Three component hot wire measurements in the vaneless space and vane region of a low speed centrifugal compressor vaned diffuser are presented. These comprise mean velocity and turbulence level distributions for a below and above design flow rate for three vane-to-vane locations at each of five radial measurement stations. The flow entering the diffuser closely resembles the classic jet-wake flow characteristic of centrifugal impeller discharges. A strong upstream influence of the diffuser vanes is observed which results in significant variations in flow quantities between the vane-to-vane locations. The circumferential variations due to the passage and blade wakes rapidly mix out in the vaneless space, although some variations are still discernible in the vaned region. Comparison with results in a vaneless diffuser suggest that the presence of the vanes accelerates this mixing out process.


2014 ◽  
Vol 496-500 ◽  
pp. 642-645
Author(s):  
Yun Wang ◽  
Wei Zhang

In view of power system in water-air UAV requirements, combine with the centrifugal impeller for aero-engine and the pump impeller. The design of a impeller of centrifugal compressor can work on the air and in the water for the new concept of air-water engine. With 3D design and a 3D CFD solver on it and analysis the results of numerical simulation. Results show that the designed impeller successfully reached the goal on the air and in the water. The experiences accumulated in this procedure are useful for similar impeller aerodynamic designs.


Author(s):  
Xu Yu-dong ◽  
Li Cong ◽  
Lv Qiong-ying ◽  
Zhang Xin-ming ◽  
Mu Guo-zhen

In order to study the effect of the trailing edge sweep angle of the centrifugal impeller on the aerodynamic performance of the centrifugal compressor, 6 groups of centrifugal impellers with different bending angles and 5 groups of different inclination angles were designed to achieve different impeller blade trailing edge angle. The computational fluid dynamics (CFD) method was used to simulate and analyze the flow field of centrifugal compressors with different blade shapes under design conditions. The research results show that for transonic micro centrifugal compressors, changing the blade trailing edge sweep angle can improve the compressor’s isentropic efficiency and pressure ratio. The pressure ratio of the compressor shows a trend of increasing first and then decreasing with the increase of the blade bending angle. When the blade bending angle is 45°, the pressure ratio of the centrifugal compressor reaches a maximum of 1.69, and the isentropic efficiency is 67.3%. But changing the inclination angle of the blade trailing edge has little effect on the isentropic efficiency and pressure ratio. The sweep angle of blade trailing edge is an effective method to improve its isentropic efficiency and pressure ratio. This analysis method provides a reference for the rational selection of the blade trailing edge angle, and provides a reference for the design of micro centrifugal compressors under high Reynolds numbers.


Author(s):  
Kiyotaka Hiradate ◽  
Hiromi Kobayashi ◽  
Takahiro Nishioka

This study experimentally and numerically investigates the effect of application of curvilinear element blades to fully-shrouded centrifugal compressor impeller on the performance of centrifugal compressor stage. Design suction flow coefficient of compressor stage investigated in this study is 0.125. The design guidelines for the curvilinear element blades which had been previously developed was applied to line element blades of a reference conventional impeller and a new centrifugal compressor impeller with curvilinear element blades was designed. Numerical calculations and performance tests of two centrifugal compressor stages with the conventional impeller and the new one were conducted to investigate the effectiveness of application of the curvilinear element blades and compare the inner flowfield in details. Despite 0.5% deterioration of the impeller efficiency, it was confirmed from the performance test results that the compressor stage with the new impeller achieved 1.7% higher stage efficiency at the design point than that with the conventional one. Moreover, it was confirmed that the compressor stage with the new impeller achieved almost the same off-design performance as that of the conventional stage. From results of the numerical calculations and the experiments, it is considered that this efficiency improvement of the new stage was achieved by suppression of the secondary flows in the impeller due to application of negative tangential lean. The suppression of the secondary flows in the impeller achieved uniformalized flow distribution at the impeller outlet and increased the static pressure recovery coefficient in the vaneless diffuser. As a result, it is thought that the total pressure loss was reduced downstream of the vaneless diffuser outlet in the new stage.


1981 ◽  
Vol 103 (2) ◽  
pp. 367-372 ◽  
Author(s):  
J. Moore ◽  
J. G. Moore

A partially-parabolic calculation procedure is used to calculate flow in a centrifugal impeller. This general-geometry, cascade-flow method is an extension of a duct-flow calculation procedure. The three-dimensional pressure field within the impeller is obtained by first performing a three-dimensional inviscid flow calculation and then adding a viscosity model and a viscous-wall boundary condition to allow calculation of the three-dimensional viscous flow. Wake flow, resulting from boundary layer accumulation in an adverse reduced-pressure gradient, causes blockage of the impeller passage and results in significant modifications of the pressure field. Calculated wake development and pressure distributions are compared with measurements.


Author(s):  
Xiaojian Li ◽  
Yijia Zhao ◽  
Zhengxian Liu ◽  
Hua Chen

The overall trend of centrifugal compressor design is to strive for high aerodynamic performance and high flow capacity products. A new methodology is derived to implement a preliminary design for high flow capacity centrifugal impeller with and without prewhirl. First, several new non-dimensional equations connecting impeller geometric and aerodynamic parameters are derived for the maximum flow capacity. The effects of prewhirl on mass flow function, inlet diameter ratio and work coefficient are discussed, respectively. Then, based on these equations, a series of design diagrams are drawn to extract the universal rules in centrifugal impeller design with prewhirl. Some physical limits of design maps are also discussed. Finally, the throat area of impeller is discussed under prewhirl, and the matching principle between prewhirl impeller and vaned diffuser is derived and validated. The proposed method can be used to design a new centrifugal compressor, or to evaluate the design feasibility and the challenge of a given design specification.


1980 ◽  
Vol 24 (3) ◽  
pp. 385-407 ◽  
Author(s):  
A. B. Mikhailovskii ◽  
V. A. Klimenko

The microinstabilities of a high-pressure plasma moving along a magnetic field with a non-uniform velocity profile are investigated. A similar problem was studied earlier by Dobrowolny on the basis of hydromagnetic equations with an oblique viscosity tensor. The present paper, unlike Dobrowolny's work, gives a kinetic analysis. Perturbations with transverse wavelength both larger and smaller than the ion Larmor radius are considered. The analysis indicates that there is a large family of microinstabilities of the ‘drift’ type whose mechanism differs from the classical Kelvin–Helmholtz instability.


Author(s):  
Mehrdad Zangeneh ◽  
Damian Vogt ◽  
Christian Roduner

In this paper the application of 3D inverse design code TURBOdesign−1 to the design of the vane geometry of a centrifugal compressor vaned diffuser is presented. For this study the new diffuser is designed to match the flow leaving the conventional impeller, which is highly non-uniform. The inverse method designs the blade geometry for a given specification of thickness and blade loading distribution. The paper describes the choice of loading distribution used in the design as well as the influence of the diffuser inlet flow distribution on the vane geometry and flow field. The flow field in the new diffuser is analysed by a 3D viscous flow code and the result is compared to that of the conventional diffuser. Finally the results of testing the stage performance of the new diffuser is compared with that of the conventional stage.


Sign in / Sign up

Export Citation Format

Share Document