Turbulence Modeling for Secondary Flow Prediction in a Turbine Cascade

1992 ◽  
Vol 114 (3) ◽  
pp. 590-598 ◽  
Author(s):  
J. G. E. Cleak ◽  
D. G. Gregory-Smith

Predictions of secondary flow in an axial turbine cascade have been made using three different turbulence models: mixing length, a one-equation model and a k–ε mixing length hybrid model. The results are compared with results from detailed measurements, not only by looking at mean flow velocities and total pressure loss, but also by assessing how well turbulence quantities are predicted. It is found that the turbulence model can have a big influence on the mean flow results, with the mixing length model giving generally the best mean flow. None of the models give good predictions of the turbulent shear stresses in the vortex region, although the k–ε model gives quite good turbulent kinetic energy values. The one-equation model is the only one to contain a transition criterion. The importance of such a criterion is illustrated, but the present one needs development to give reliable predictions in the complex flow within a blade passage.

1991 ◽  
Author(s):  
J. G. E. Cleak ◽  
D. G. Gregory-Smith

Predictions of secondary flow in an axial turbine cascade have been made using three different turbulence models; mixing length, a one equation model and a k-epsilon/mixing length hybrid model. The results are compared with results from detailed measurements, not only by looking at mean flow velocities and total pressure loss, but also by assessing how well turbulence quantities are predicted. It is found that the turbulence model can have a big influence on the mean flow results, with the mixing length model giving generally the best mean flow. None of the models give good predictions of the turbulent shear stresses in the vortex region, although the k-epsilon model gives quite good turbulent kinetic energy values. The one equation model is the only one to contain a transition criterion. The importance of such a criterion is illustrated, but the present one needs development to give reliable predictions in the complex flow within a blade passage.


Author(s):  
B. Song ◽  
R. S. Amano

Simulation of the complex flow inside a sharp U-bend needs both refined turbulence models and higher order numerical discretization schemes. In the present study, a nonlinear low-Reynolds number (low-Re) k–ω model including the cubic terms was employed to predict the turbulent flow through a square cross-sectioned U-bend with a sharp curvature, Rc/D = 0.65. In the turbulence model employed for the present study, the cubic terms are incorporated to represent the effect of extra strain-rates such as streamline curvature and three-dimensionality on both turbulence normal and shear stresses. In order to accurately predict such complex flowfields, a higher-order bounded interpolation scheme (Song, et al., 1999) has been used to discretize all the transport equations. The calculated results by using both the non-linear k–ω model and the linear low-Reynolds number k–ε model (Launder and Sharma, 1974) have been compared with experimental data. It is shown that the present model produces satisfactory predictions of the flow development inside the sharp U-bend and well captures the characteristics of the turbulence anisotropy within the duct core region and wall sub-layer.


Author(s):  
Tausif Jamal ◽  
D. Keith Walters

Abstract Unsteady turbulent wall bounded flows can produce complex flow physics including temporally varying mean pressure gradients, intermittent regions of high turbulence intensity, and interaction of different scales of motion. As a representative example, pulsating channel flow presents significant challenges for newly developed and existing turbulence models in computational fluid dynamics (CFD) simulations. The present study investigates the performance of the Dynamic Hybrid RANS-LES (DHRL) model with a newly proposed dynamic time filtering (DTF) technique, compared against an industry standard Reynolds-Averaged Navier-Stokes (RANS) model, Monotonically Integrated Large Eddy Simulation (MILES), and two conventional Hybrid RANS-LES (HRL) models. Model performance is evaluated based on comparison to previously documented Large Eddy Simulation (LES) results. Simulations are performed for a fully developed flow in a channel with time-periodic driving pressure gradient. Results highlight the relative merits of each model type and indicate that the use of a dynamic time filtering technique improves the accuracy of the DHRL model when compared to a static time filtering technique. A comprehensive evaluation of the results suggests that the DHRL-DTF method provides the most consistently accurate reproduction of the time-dependent mean flow characteristics for all models investigated.


Author(s):  
G. D. MacIsaac ◽  
S. A. Sjolander

The final losses within a turbulent flow are realized when eddies completely dissipate to internal energy through viscous interactions. The accurate prediction of the turbulence dissipation, and therefore the losses, requires turbulence models which represent, as accurately as possible, the true flow physics. Eddy viscosity turbulence models, commonly used for design level computations, are based on the Boussinesq approximation and inherently assume the eddy viscosity field is isotropic. The current paper compares the computational predictions of the flow downstream of a low-speed linear turbine cascade to the experimentally measured results. Steady-state computational simulations were performed using ANSYS CFX v12.0 and employed the shear stress transport (SST) turbulence model with the γ-Reθ transition model. The experimental data includes measurements of the mean and turbulent flow quantities. Steady pressure measurements were collected using a seven-hole pressure probe and the turbulent flow quantities were measured using a rotatable x-type hotwire probe. Data is presented for two axial locations: 120% and 140% of the axial chord (Cx) downstream of the leading edge. The computed loss distribution and total bladerow losses are compared to the experimental measurements. Differences are noted and a discussion of the flow structures provides insights into the origin of the differences. Contours of the shear eddy viscosity are presented for each axial plane. The secondary flow appears highly anisotropic, demonstrating a fundamental difference between the computed and measured results. This raises questions as to the validity of using two-equation turbulence models, which are based on the Boussinesq approximation, for secondary flow predictions.


Author(s):  
Wolfgang Sanz ◽  
Arno Gehrer ◽  
Jakob Woisetschläger ◽  
Martin Forstner ◽  
Wolfgang Artner ◽  
...  

In turbomachinery the wake flow together with the inherent unsteadiness caused by interaction between stator and rotor has a significant impact on efficiency and performance. The prediction of the wake flow depends largely on the turbulence modeling. Therefore in this study the evolution of a viscous wake downstream of a linear turbine cascade is experimentally and computationally investigated. In a transonic cascade test stand Laser Doppler Velocimeter (LDV) measurements of velocity and turbulent kinetic energy are done in several axial planes downstream of the blade trailing edge. Two different turbulence models are then incorporated into a two-dimensional Navier-Stokes solver to calculate the turbulent wake flow and the results are compared with the experimental data to test the quality of the turbulence models. The large discrepancies between measurement and Calculation are assumed to be caused by the periodic vortex shedding from the blunt trailing edge which is not taken into account by the turbulence models. But further research is needed to resolve this issue.


1988 ◽  
Vol 110 (3) ◽  
pp. 583-589 ◽  
Author(s):  
Y. Nagano ◽  
C. Kim

A new proposal for closing the energy equation is presented at the two-equation level of turbulence modeling. The eddy diffusivity concept is used in modeling. However, just as the eddy viscosity is determined from solutions of the k and ε equations, so the eddy diffusivity for heat is given as functions of temperature variance t2, and the dissipation rate of temperature fluctuations εt, together with k and ε. Thus, the proposed model does not require any questionable assumptions for the “turbulent Prandtl number.” Modeled forms of the t2 and εt equations are developed to account for the physical effects of molecular Prandtl number and near-wall turbulence. The model is tested by application to a flat-plate boundary layer, the thermal entrance region of a pipe, and the turbulent heat transfer in fluids over a wide range of the Prandtl number. Agreement with the experiment is generally very satisfactory.


Author(s):  
J. M. Oh ◽  
A Engeda ◽  
M. K. Chung

A qualitative numerical study of the flow in the U-turn bend of return channel systems for multistage centrifugal compressors is presented. Calculations have been carried out using the flow analysis program FLUENT. The flow in the U-turn bend is highly three-dimensional and complex. The main cause for this is the circumferential variation of the velocity profile at the inlet of the bend. The circumferential variation of the velocity profile is an unavoidable result from the wake/jet flow at the exit of the impeller. In this article, first the effect of the wake/jet flow coming into the U-turn bend is studied. It is shown that the wake/jet flow develops to form the secondary flow in the U-turn bend. The secondary flow, with the high streamline curvature of the flow in the bend, makes the flow inside the bend highly complex. This complex flow is hard to predict with conventional turbulence models that have been developed on the basis of near homogeneity of flows. Comparing the present result with a study that successfully predicted the loss and flow behaviour in the bend, a discussion is presented on the turbulence and the turbulence models. Also, the loss mechanisms in the U-turn bend are discussed in detail.


1978 ◽  
Vol 15 (11) ◽  
pp. 1833-1849 ◽  
Author(s):  
Edward J. Hickin

The primary velocity field and pattern of secondary flow are described for nine consecutive bends of the Squamish River in southwest British Columbia.The velocity field largely can be explained in terms of variation in channel form, advective acceleration responses, and water transfers by secondary flow.The pattern of secondary flow accords with the general model of spiral flow in meanders. Divergences from this ideal pattern can be explained by bend–flow interaction induced by the variable planform geometry of the channel.The strength of secondary circulation increases rapidly as the ratio of the radius of bend curvature to channel width (rm/w) declines from 4.0 to the data minimum of 1.41. There is no discontinuity phenomenon in the flow structure over the measured range of rm/w; the Bagnold separation–collapse model does not apply to the Squamish River.As rm/w declines to values less than 3.0, the maximum velocity filament shifts from the concave to the convex bank zone. The resulting high shear stresses over the point bar and declining shear stresses at the concave bank markedly reduce the channel migration rate.Separation zones developed at the concave bank of tightly curved bends provide the mechanism for completely halting (and indeed reversing) the process of channel migration.


Author(s):  
Vincenzo Dossena ◽  
Antonio Perdichizzi ◽  
Marina Ubaldi ◽  
Pietro Zunino

An experimental investigation on a linear turbine cascade has been carried out to study the effects induced by incidence angle and pitch-chord ratio variations on the three-dimensional turbulent flow downstream of the cascade. Previous mean flow measurements have shown how these parameters influence the energy losses and the secondary velocity field. Now detailed hot wire measurements have been performed on a plane located at 22 per cent of an axial chord downstream of the trailing edge, in order to determine the distribution of all the six Reynolds stress tensor components, for three incidence conditions (i = −30, 0, +30 deg) and for three pitch-chord ratios (s/c = 0.58, 0.72, 0.87). Significant changes of the turbulent flow structure, interesting magnitude and distribution of the Reynolds stress components, have been observed for all the considered test conditions. The analysis of the results shows the correlation between the mean flow features and the turbulent quantities and the relationship between the energy loss production and the blade loading variation. The presented data are also suitable for assessing the behaviour of turbulence models in complex 3D flows, on design and off-design conditions.


Author(s):  
Yogini Patel ◽  
Teemu Turunen-Saaresti ◽  
Giteshkumar Patel ◽  
Aki Grönman

Understanding the condensation process at the low-pressure (LP) turbine is important because condensation introduces extra losses, and erosion caused by the droplets wear turbine blades. The paper presents an investigation of the turbulence modelling on the non-equilibrium homogeneous condensing steam flow in a stationary turbine cascade employing 2D compressible Navier-Stokes (NS) equations. The classical nucleation theory is utilized to model the condensation phenomena. The performance of various turbulence models (i.e., the Spalart-Allmaras, the k-ω, the k-ε, the RNG k-ε, the Realizable k-ε, and the SST k-ω) in condensing steam flows is discussed. The SST k-ω model is modified and implemented into a commercial computational fluid dynamics (CFD) code. Substantial improvements in the prediction accuracy are observed when compared with the original SST k-ω model. Overall, the modified model is in excellent agreement with the measurements in all studied test cases of the turbine cascade. The qualitative and quantitative analysis illustrates the importance of turbulence modeling in wet-steam flows.


Sign in / Sign up

Export Citation Format

Share Document