Numerical Investigation of Turbulence Modelling on Condensing Steam Flows in Turbine Cascade

Author(s):  
Yogini Patel ◽  
Teemu Turunen-Saaresti ◽  
Giteshkumar Patel ◽  
Aki Grönman

Understanding the condensation process at the low-pressure (LP) turbine is important because condensation introduces extra losses, and erosion caused by the droplets wear turbine blades. The paper presents an investigation of the turbulence modelling on the non-equilibrium homogeneous condensing steam flow in a stationary turbine cascade employing 2D compressible Navier-Stokes (NS) equations. The classical nucleation theory is utilized to model the condensation phenomena. The performance of various turbulence models (i.e., the Spalart-Allmaras, the k-ω, the k-ε, the RNG k-ε, the Realizable k-ε, and the SST k-ω) in condensing steam flows is discussed. The SST k-ω model is modified and implemented into a commercial computational fluid dynamics (CFD) code. Substantial improvements in the prediction accuracy are observed when compared with the original SST k-ω model. Overall, the modified model is in excellent agreement with the measurements in all studied test cases of the turbine cascade. The qualitative and quantitative analysis illustrates the importance of turbulence modeling in wet-steam flows.

Author(s):  
Wolfgang Sanz ◽  
Arno Gehrer ◽  
Jakob Woisetschläger ◽  
Martin Forstner ◽  
Wolfgang Artner ◽  
...  

In turbomachinery the wake flow together with the inherent unsteadiness caused by interaction between stator and rotor has a significant impact on efficiency and performance. The prediction of the wake flow depends largely on the turbulence modeling. Therefore in this study the evolution of a viscous wake downstream of a linear turbine cascade is experimentally and computationally investigated. In a transonic cascade test stand Laser Doppler Velocimeter (LDV) measurements of velocity and turbulent kinetic energy are done in several axial planes downstream of the blade trailing edge. Two different turbulence models are then incorporated into a two-dimensional Navier-Stokes solver to calculate the turbulent wake flow and the results are compared with the experimental data to test the quality of the turbulence models. The large discrepancies between measurement and Calculation are assumed to be caused by the periodic vortex shedding from the blunt trailing edge which is not taken into account by the turbulence models. But further research is needed to resolve this issue.


Author(s):  
Giteshkumar Patel ◽  
Yogini Patel ◽  
Teemu Turunen-Saaresti

The paper describes the influence of trailing edge geometries on the non-equilibrium homogeneously condensing steam flow in the stationary cascade of turbine blades. The computational fluid dynamics (CFD) simulations were performed with the ANSYS Fluent CFD code using the Eulerian-Eulerian approach. The condensation phenomena were simulated on the basis of the classical nucleation theory, and the steam properties were calculated with the real gas model. Flow turbulence was solved by employing the modified version of the shear-stress transport (SST) k-ω turbulence model. For this study, three trailing edge profiles; that is, conic, semicircular and square were considered. The influence of the trailing edge shapes were discussed together with experimental data available in the literature. The presented results show that the trailing edge geometries influence on the nucleation process, the droplet size, wetness fraction, the shock waves structure generated at trailing edge and its angles, the flow angle, the entropy generation and flow mixing in the wake. The cascade loss coefficients were calculated for the low inlet superheat case and for the high inlet superheat case. The presented results demonstrated that the losses that occur due to the irreversible heat and mass transfer during the condensation process were also influenced due to the trailing edge shapes.


2009 ◽  
Vol 131 (4) ◽  
Author(s):  
Włodzimierz Wróblewski ◽  
Sławomir Dykas ◽  
Andrzej Gardzilewicz ◽  
Michal Kolovratnik

This paper presents the experimental investigations of steam flow with condensation in the blading system of the low-pressure (LP) part of a 360 MW turbine. To this end, special probes were used, which provided flow visualization opportunities including localization of the front of condensation, determining distributions of pressure, temperature, velocity, and flow angle in the inter-row gaps, measurements of water droplet concentration and sizes. The measurements have proved that the condensation process in the LP turbine might be of heterogeneous nature, depending on the concentration of chemical impurities in steam. The measurement results constituted the basis for computational fluid dynamics (CFD) flow calculations, which were performed using the time-dependent 3D Reynolds averaged Navier–Stokes equations coupled with two-equation turbulence model (k-ω SST) and additional conservation equations for the liquid phase. The set of governing equations has been closed by a “local” real gas equation of state. The condensation phenomena were modeled on the basis of the classical nucleation theory. The heterogeneous condensation model on the insoluble and soluble impurities was implemented into presented CFD code. The system of governing equations was solved by means of a finite volume method on a multiblock structured grid. The obtained numerical results and experimental data were compared and discussed.


Author(s):  
Yogini Patel ◽  
Giteshkumar Patel ◽  
Teemu Turunen-Saaresti

The aim of the paper is to analyse the effect of turbulence and real gas models on the process of spontaneous condensation in converging diverging (CD) nozzle by using commercial Computational Fluid Dynamics (CFD) code. The calculations were based on the 2-D compressible Navier-Stokes (NS) equations coupled with two-equation turbulence model, and the non-equilibrium spontaneous condensing steam flow was solved on the basis of the classical nucleation theory. The results were validated to the available experimental data.


Author(s):  
Mark G. Turner ◽  
Ian K. Jennions

An explicit Navier-Stokes solver has been written with the option of using one of two types of turbulence models. One is the Baldwin-Lomax algebraic model and the other is an implicit k-ϵ model which has been coupled with the explicit Navier-Stokes solver in a novel way. This type of coupling, which uses two different solution methods, is unique and combines the overall robustness of the implicit k-ϵ solver with the simplicity of the explicit solver. The resulting code has been applied to the solution of the flow in a transonic fan rotor which has been experimentally investigated by Wennerstrom. Five separate solutions, each identical except for the turbulence modelling details, have been obtained and compared with the experimental results. The five different turbulence models run were: the standard Baldwin-Lomax model both with and without wall functions, the Baldwin-Lomax model with modified constants and wall functions, a standard k-ϵ model and an extended k-ϵ model which accounts for multiple time scales by adding an extra term to the dissipation equation. In general, as the model includes more of the physics, the computed shock position becomes closer to the experimental results.


2005 ◽  
Vol 127 (2) ◽  
pp. 214-222 ◽  
Author(s):  
F. Bertagnolio ◽  
N. N. Sørensen ◽  
F. Rasmussen

The objective of this paper is an improved understanding of the physics of the aeroelastic motion of wind turbine blades in order to improve the numerical models used for their design. Two- and three-dimensional Navier–Stokes calculations of the flow around a wind turbine airfoil using the k−ω SST and Detached Eddy Simulation (DES) turbulence models, as well as an engineering semiempirical dynamic stall model, are conducted. The computational results are compared to the experimental results that are available for both the static airfoil and the pitching airfoil. It is shown that the Navier–Stokes simulations can reproduce the main characteristic features of the flow. The DES model seems to be able to reproduce most of the details of the unsteady aerodynamics. Aerodynamic work computations indicate that a plunging motion of the airfoil can become unstable.


1992 ◽  
Vol 114 (3) ◽  
pp. 590-598 ◽  
Author(s):  
J. G. E. Cleak ◽  
D. G. Gregory-Smith

Predictions of secondary flow in an axial turbine cascade have been made using three different turbulence models: mixing length, a one-equation model and a k–ε mixing length hybrid model. The results are compared with results from detailed measurements, not only by looking at mean flow velocities and total pressure loss, but also by assessing how well turbulence quantities are predicted. It is found that the turbulence model can have a big influence on the mean flow results, with the mixing length model giving generally the best mean flow. None of the models give good predictions of the turbulent shear stresses in the vortex region, although the k–ε model gives quite good turbulent kinetic energy values. The one-equation model is the only one to contain a transition criterion. The importance of such a criterion is illustrated, but the present one needs development to give reliable predictions in the complex flow within a blade passage.


2021 ◽  
Vol 39 (1) ◽  
pp. 227-234
Author(s):  
Khelifa Hami

This contribution represents a critical view of the advantages and limits of the set of mathematical models of the physical phenomena of turbulence. Turbulence models can be grouped into two categories, depending on how turbulent quantities are calculated: direct numerical simulations (DNS) and RANS (Reynolds Averaged Navier-Stokes Equations) models. The disadvantage of these models is that they require enormous computing power, inaccessible, especially for large and complicated geometries. For this reason, hybrid models (combinations between DNS and RANS methods) have been developed, for example, the LES (“Large Eddy Simulation”) or DES (“Detached Eddy Simulation”) models. They represent a compromise - are less precise than DNS, but more precise than RANS models. The results presented in this contribution will allow and facilitate future research in the field the choice of the model approach necessary for the case studies whatever their difficulty factor.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Ryley McConkey ◽  
Eugene Yee ◽  
Fue-Sang Lien

AbstractThe recent surge in machine learning augmented turbulence modelling is a promising approach for addressing the limitations of Reynolds-averaged Navier-Stokes (RANS) models. This work presents the development of the first open-source dataset, curated and structured for immediate use in machine learning augmented corrective turbulence closure modelling. The dataset features a variety of RANS simulations with matching direct numerical simulation (DNS) and large-eddy simulation (LES) data. Four turbulence models are selected to form the initial dataset: k-ε, k-ε-ϕt-f, k-ω, and k-ω SST. The dataset consists of 29 cases per turbulence model, for several parametrically sweeping reference DNS/LES cases: periodic hills, square duct, parametric bumps, converging-diverging channel, and a curved backward-facing step. At each of the 895,640 points, various RANS features with DNS/LES labels are available. The feature set includes quantities used in current state-of-the-art models, and additional fields which enable the generation of new feature sets. The dataset reduces effort required to train, test, and benchmark new corrective RANS models. The dataset is available at 10.34740/kaggle/dsv/2637500.


Author(s):  
Pascal Post ◽  
Benjamin Winhart ◽  
Francesca di Mare

Abstract The influence of turbulence modeling approach by means of (U)RANS and LES on the overall modeling of turbulent condensing wet steam flows is investigated using the example of a low-pressure steam turbine cascade. For an accurate numerical treatment of turbulence in presence of shock waves, necessary for predictive scale-resolving computations, a hybrid flux treatment switches between a baseline non-dissipative central flux in energy consistent split form and a shock-capturing upwind flux in shocked regions based on a shock sensor. Condensation is realized by a mono-dispersed Euler-Euler source term model, the equation of state by the highly efficient and accurate SBTL tabulation. The numerical treatment is validated with a decay of homogeneous isotropic turbulence test case containing eddy shocklets. The measurement results of the condensing wet steam cascade are overall much better matched by LES compared to RANS and URANS. Analysis shows that the LES is much better able to account for the inherently unsteady nature of the spontaneous condensation process and its interaction with the trailing edge shock wave structure.


Sign in / Sign up

Export Citation Format

Share Document