Stability Boundary of Non-Linear Orbits Within Clearance Circle of Journal Bearings

1993 ◽  
Vol 115 (3) ◽  
pp. 303-307 ◽  
Author(s):  
M. M. Khonsari ◽  
Y. J. Chang

The transient, nonlinear study of journal bearing stability requires tracking the locus of the shaft center as a function of time. It is shown that there exists a boundary within the bearing clearance circle outside of which any initial condition would yield an unstable orbit. This is shown to be the case for operating speeds that are well below the threshold of instability according to the linearized stability analysis.

2019 ◽  
Vol 71 (1) ◽  
pp. 31-39
Author(s):  
Subrata Das ◽  
Sisir Kumar Guha

Purpose The purpose of this paper is to investigate the effect of turbulence on the stability characteristics of finite hydrodynamic journal bearing lubricated with micropolar fluid. Design/methodology/approach The non-dimensional transient Reynolds equation has been solved to obtain the non-dimensional pressure field which in turn used to obtain the load carrying capacity of the bearing. The second-order equations of motion applicable for journal bearing system have been solved using fourth-order Runge–Kutta method to obtain the stability characteristics. Findings It has been observed that turbulence has adverse effect on stability and the whirl ratio at laminar flow condition has the lowest value. Practical implications The paper provides the stability characteristics of the finite journal bearing lubricated with micropolar fluid operating in turbulent regime which is very common in practical applications. Originality/value Non-linear stability analysis of micropolar fluid lubricated journal bearing operating in turbulent regime has not been reported in literatures so far. This paper is an effort to address the problem of non-linear stability of journal bearings under micropolar lubrication with turbulent effect. The results obtained provide useful information for designing the journal bearing system for high speed applications.


Friction ◽  
2020 ◽  
Author(s):  
Yu Huang ◽  
Haiyin Cao ◽  
Zhuxin Tian

AbstractIn this study, we observe that there are two threshold speeds (stability threshold speed and second threshold speed) for the long journal bearing, which is different for the short bearing. When the rotating speed is below the stability threshold speed, the stability boundary nearly coincides with the clearance circle, and the journal center gradually returns to the equilibrium point after being released at an initial point. If the rotating speed is between the stability threshold speed and the second threshold speed, after being released at an initial point, the journal center converges to a contour containing the equilibrium point. In this situation, for a higher rotating speed, the corresponding contour is also larger. When the rotating speed exceeds the second threshold speed, the journal gradually moves towards the bearing surface after being released at an initial point.


Author(s):  
TVVLN Rao ◽  
Ahmad M A Rani ◽  
Norani M Mohamed ◽  
Hamdan H Ya ◽  
Mokhtar Awang ◽  
...  

This paper presents one-dimensional analysis of modified dynamic Reynolds equation derived for partial slip texture multi-lobe journal bearings. The novelty included in this study is the configuration of partial slip texture region on the bottom bearing lobe surface of a multi-lobe journal bearing under a constant vertical load. The nondimensional pressure and shear stress for steady-state and nondimensional pressure gradients for dynamic coefficients for each lobe with partial slip texture configuration are derived based on narrow groove theory. Linearized stability analysis is evaluated using infinitesimal perturbation method. Results of static and stability characteristics of partial slip texture multi-lobe (two-axial groove, elliptical, three-lobe and offset) journal bearings are presented. Partial slip texture configuration significantly enhances load capacity, coefficient of friction, and stability of two-lobe journal bearing.


Author(s):  
Ram Turaga

The influence of deterministic surface texture on the sub-synchronous whirl stability of a rigid rotor has been studied. Non-linear transient stability analysis has been performed to study the stability of a rigid rotor supported on two symmetric journal bearings with a rectangular dimple of large aspect ratio. The surface texture parameters considered are dimple depth to minimum film thickness ratio and the location of the dimple on the bearing surface. Journal bearings of different Length to diameter ratios have been studied. The governing Reynolds equation for finite journal bearings with incompressible fluid has been solved using the Finite Element Method under isothermal conditions. The trajectories of the journal center have been obtained by solving the equations of motion of the journal center by the fourth-order Runge-Kutta method. When the dimple is located in the raising part of the pressure curve the positive rectangular dimple is seen to decrease the stability whereas the negative rectangular dimple is seen to improve the stability of the rigid rotor.


Author(s):  
Katsuhisa Fujita ◽  
Atsuhiko Shintani ◽  
Koji Yoshioka ◽  
Kouhei Okuno ◽  
Hiroaki Tanaka ◽  
...  

Recently, in many areas such as computers and information equipments etc., the fluid journal bearings are required to rotate at higher speed. To satisfy this requirement, the strictly stability analysis of the journal is indispensable. In this paper, we investigate the stability analysis of the dynamic behavior of the fluid plain journal bearing with an incompressible fluid considering the nonlinear terms of fluid forces. The stability analysis is examined by the numerical simulations on each model of a rigid rotor and a flexible rotor. The stable regions by nonlinear analysis are compared with the regions by classical linear analysis. Performing the nonlinear simulation analysis, it becomes clear that there is rather a stable region which amplitude does not grow up abruptly, and this phenomenon can not only be pointed out, but also is judged to be unstable by linear stable analysis. Finally, the experiment using actual bearings is performed and compared with the numerical results.


1977 ◽  
Vol 99 (4) ◽  
pp. 434-440 ◽  
Author(s):  
M. J. Cohen

The report presents an investigation of the dynamic stability behaviour of self-aligning journal gas bearings when subjected to arbitrary small disturbances from an initial condition of operational equilibrium. The method is based on an approach similar to the nonlinear-ph solution of the author for the quasi-static loading case but the equations of motion of the journal are the linearized forms for small motion in the two degrees (translational) of freedom of the journal center. The stability domains for the infinite journal bearing are presented for the whole of the eccentricity (ε) and rotational speed (Λ) ranges for any given bearing geometry, in the shape of stability boundaries in that domain. It is shown that a given bearing will be stable within a corridor in the (ε, Λ) parametral domain having as its lower bound the so called “half-speed” whirl stability boundary and as its upper bound another whirling instability at a higher characteristic (relative) frequency, the instability occurs generally at the higher eccentricities and lower rotational speeds.


Author(s):  
Shitendu Some ◽  
Sisir K Guha

In this paper a non-linear stability analysis of the two-layered porous journal bearing under coupled-stress lubricant has been presented with velocity slip phenomenon and additive’s percolation effect. In this non-linear transient analysis, system stability is determined by tracing the locus of the journal center and various trajectories of journal center locus have been represented in graphical form for different operating conditions. Furthermore, stability characteristics in respect of critical mass parameter and whirl ratio have been studied under various parametric conditions and a comparison between the linear and non-linear stability analysis have been demonstrated. To acquire the non-dimensional pressure values, non-dimensional transient Reynolds equation has been solved and with these pressure values, bearing load carrying capacity are derived. Fourth order Runge-Kutta method is used to solve the second order equations of motion for journal bearing system to obtain the stability characteristics. Results of this analysis may be helpful for designing such bearings.


1980 ◽  
Vol 102 (3) ◽  
pp. 291-298 ◽  
Author(s):  
D. F. Li ◽  
K. C. Choy ◽  
P. E. Allaire

Multilobe journal bearings are often used to improve the stability response of rotating machinery. Such machines operate near the stability threshold of the bearing-rotor system. This work determines the linearized stability threshold of four multilobe journal bearings: elliptical, offset elliptical, three lobe, and four lobe. A nonlinear transient analysis of a rigid rotor in each of these bearings is carried out above and below the threshold speed. Shaft orbits and bearing forces are calculated. A numerical fast Fourier transform analysis is used to obtain the frequency content of the nonlinear orbit.


1959 ◽  
Vol 81 (2) ◽  
pp. 245-252 ◽  
Author(s):  
F. W. Ocvirk ◽  
G. B. DuBois

A method of relating surface finish to minimum oil-film thickness and the corresponding load capacity of plain journal bearings is presented with supporting experimental data. The effect of clearance on load capacity and friction are shown on graphs indicating an optimum bearing clearance.


Sign in / Sign up

Export Citation Format

Share Document