Thermoeconomic Modeling and Parametric Study of Hybrid Solid Oxide Fuel Cell-Gas Turbine-Steam Turbine Power Plants Ranging From 1.5MWeto10MWe

Author(s):  
Alexandros Arsalis ◽  
Michael R. von Spakovsky ◽  
Francesco Calise

Detailed thermodynamic, kinetic, geometric, and cost models are developed, implemented, and validated for the synthesis/design and operational analysis of hybrid solid oxide fuel cell (SOFC)-gas turbine-steam turbine systems ranging in size from 1.5MWeto10MWe. The fuel cell model used in this research work is based on a tubular Siemens-Westinghouse-type SOFC, which is integrated with a gas turbine and a heat recovery steam generator (HRSG) integrated in turn with a steam turbine cycle. The current work considers the possible benefits of using the exhaust gases in a HRSG in order to produce steam, which drives a steam turbine for additional power output. Four different steam turbine cycles are considered in this research work: a single-pressure, a dual-pressure, a triple-pressure, and a triple-pressure with reheat. The models have been developed to function both at design (full load) and off-design (partial load) conditions. In addition, different solid oxide fuel cell sizes are examined to assure a proper selection of SOFC size based on efficiency or cost. The thermoeconomic analysis includes cost functions developed specifically for the different system and component sizes (capacities) analyzed. A parametric study is used to determine the most viable system/component syntheses/designs based on maximizing the total system efficiency or minimizing the total system life cycle cost.

2010 ◽  
Vol 171-172 ◽  
pp. 319-322
Author(s):  
Hong Bin Zhao ◽  
Xu Liu

The simulation and analyses of a “bottoming cycle” solid oxide fuel cell–gas turbine (SOFC–GT) hybrid system at the standard atmospheric condition is presented in this paper. The fuel cell model used in this research work is based on a tubular Siemens–Westinghouse–type SOFC with 1.8MW capacity. Energy and exergy analyses of the whole system at fixed conditions are carried out. Then, comparisons of the exergy destruction and exergy efficiency of each component are also conducted to determine the potential capability of the hybrid system to generate power. Moreover, the effects of operating conditions including fuel flow rate and SOFC operating temperature on performances of the hybrid system are analyzed.


Author(s):  
Ananda Himansu ◽  
Joshua E. Freeh ◽  
Christopher J. Steffen ◽  
Robert T. Tornabene ◽  
Xiao-Yen J. Wang

A system level analysis, inclusive of mass, is carried out for a cryogenic hydrogen fueled hybrid solid oxide fuel cell and bottoming gas turbine (SOFC/GT) power system. The system is designed to provide primary or secondary electrical power for an unmanned aerial vehicle (UAV) over a high altitude, long endurance mission. The net power level and altitude are parametrically varied to examine their effect on total system mass. Some of the more important technology parameters, including turbomachinery efficiencies and the SOFC area specific resistance, are also studied for their effect on total system mass. Finally, two different solid oxide cell designs are compared to show the importance of the individual solid oxide cell design on the overall system. We show that for long mission durations of 10 days or more, the fuel mass savings resulting from the high efficiency of an SOFC/GT system more than offset the larger powerplant mass resulting from the low specific power of the SOFC/GT system. These missions therefore favor high efficiency, low power density systems, characteristics typical of fuel cell systems in general.


Author(s):  
Souman Rudra ◽  
A. S. M. Sayem ◽  
S. K. Biswas ◽  
Soonil Lee ◽  
Hyung Taek Kim

The fuel cell model developed to this research is based on a solid oxide fuel cell (SOFC) integrated with a heat recovery steam generator (HRSG), a gas turbine (GT) and a steam turbine (ST). Three possible technological approaches are compared to suggest the desirable combine cycle. First approach indicates the generation of the required steam in the coupled SOFC and gas turbine cycle. Then the exhaust gas from gas turbine involves driving the HRSG. And the last one involves of using exhaust gases in the HRSG which drives the steam turbine by producing steam for additional power works. To achieve the more efficient conversation of the thermal energy to power output, the component design mainly HRSG and steam turbine have to be made in a great concern. And HRSG is considered as a triple pressure for the taken model. This article is also delineated the analysis of coal fed instead of normal methane gas fed, for the reforming power generation based on thermodynamic processes including CO2 Capture. External reforming in SOFC-HRSG plants fueled by high quality coal enhances efficiency due to improved exhaust heat recovery and higher voltage produced by higher hydrogen partial pressure in the anode inlet. For improving the whole cycle efficiency, power output generation from both SOFC and conventional system (steam turbine and gas turbine) are described as combine system. This model is simulated by the ASPEN plus software which is able to provide thermodynamic and parametric analysis to evaluate the effects of various parameters like air flow rate, temperature, pressure and fuel flow rate on the system performance. Some MATLAB simulations are also added to provide strong opinion for this model through this paper.


Author(s):  
Georgia C. Karvountzi ◽  
Clifford M. Price ◽  
Paul F. Duby

A solid oxide fuel cell (SOFC) integrated in a hybrid system with a gas turbine can achieve lower heating value (LHV) power of efficiencies of about 70%. Given the high operating temperature of the SOFC, it produces high grade heat, and a hybrid system designed for cogeneration may achieve total LHV efficiencies of 78% of 80% without post combustion and 85%–88% with post combustion. The present paper illustrates the optimum integration of a tubular solid oxide fuel cell in a cogeneration cycle with a multiple pressure heat recovery steam generator (HRSG) and a back pressure steam turbine. We considered fuel cells of 7.5 MW, 9 MW, 15 MW, 15 MW, 18 MW, 22.5 MW and 27 MW by scaling up published data for a 1.2 MW tubular solid oxide fuel cell. The operating pressures were 3 and 9atm. We used GateCycle™ heat balance software by GE Enter Software, LLC, to design a 20–40 MW high efficiency cogeneration plant. We performed a calculation of the heat balance of the fuel cell stack in Microsoft® Excel and then we imported the results into GateCycle™. We developed curves showing LHV “electric” efficiency versus power for different ratios of “fuel cell-to-gas turbine size”. Pressurization has a positive impact on the fuel cell polarization curve leading to higher power output. The gain in electric power, however, is offset by the additional power requirement of the compressor at higher pressures. Our analysis shows that an optimum pressure of about 9 atmospheres results in an overall hybrid system power efficiency of about 70% and a LHV “cogeneration” efficiency of about 80%. In conclusion, high efficiencies are obtained by optimization of a hybrid system consisting of pressurized high temperature fuel cells with gas turbines and a steam turbine.


Author(s):  
Giulio Vialetto ◽  
Marco Noro ◽  
Masoud Rokni

In this paper, a new heat recovery for a microcogeneration system based on solid oxide fuel cell and air source heat pump (HP) is presented with the main goal of improving efficiency on energy conversion for a residential building. The novelty of the research work is that exhaust gases after the fuel cell are first used to heat water for heating/domestic water and then mixed with the external air to feed the evaporator of the HP with the aim of increasing energy efficiency of the latter. This system configuration decreases the possibility of freezing of the evaporator as well, which is one of the drawbacks for air source HP in Nordic climates. A parametric analysis of the system is developed by performing simulations varying the external air temperature, air humidity, and fuel cell nominal power. Coefficient of performance (COP) can increase more than 100% when fuel cell electric power is close to its nominal (50 kW), and/or inlet air has a high relative humidity (RH) (close to 100%). Instead, the effect of mixing the exhausted gases with air may be negative (up to −25%) when fuel cell electric power is 20 kW and inlet air has 25% RH. Thermodynamic analysis is carried out to prove energy advantage of such a solution with respect to a traditional one, resulting to be between 39% and 44% in terms of primary energy. The results show that the performance of the air source HP increases considerably during cold season for climates with high RH and for users with high electric power demand.


Sign in / Sign up

Export Citation Format

Share Document