Numerical Approach for Solving Reynolds Equation With JFO Boundary Conditions Incorporating ALE Techniques

2008 ◽  
Vol 131 (1) ◽  
Author(s):  
Bernhard Schweizer

Calculating the fluid flow and pressure field in thin fluid films, lubrication theory can be applied, and Reynolds fluid film equation has to be solved. Therefore, boundary conditions have to be formulated. Well-established mass-conserving boundary conditions are the Jakobsson–Floberg–Olsson (JFO) boundary conditions. A number of numerical techniques, which have certain advantages and certain disadvantages, have been developed to solve the Reynolds equation in combination with JFO boundary conditions. In the current paper, a further method is outlined, which may be a useful alternative to well-known techniques. The main idea is to rewrite the boundary value problem consisting of the Reynolds equation and the JFO boundary conditions as an arbitrary Lagrangian–Eulerian (ALE) problem. In the following, an ALE formulation of the Reynolds equation with JFO boundary conditions is derived. Based on a finite element implementation of the governing boundary value problem, numerical examples are presented, and pressure fields are calculated for a plain hydrodynamic journal bearing with an axial oil groove.

2016 ◽  
Vol 11 (1) ◽  
pp. 38-52
Author(s):  
I.M. Utyashev ◽  
A.M. Akhtyamov

The paper discusses direct and inverse problems of oscillations of the string taking into account symmetrical characteristics of the external environment. In particular, we propose a modified method of finding natural frequencies using power series, and also the problem of identification of the boundary conditions type and parameters for the boundary value problem describing the vibrations of a string is solved. It is shown that to identify the form and parameters of the boundary conditions the two natural frequencies is enough in the case of a symmetric potential q(x). The estimation of the convergence of the proposed methods is done.


2021 ◽  
Vol 18 (5) ◽  
Author(s):  
Francesco Aldo Costabile ◽  
Maria Italia Gualtieri ◽  
Anna Napoli

AbstractGeneral nonlinear high odd-order differential equations with Lidstone–Euler boundary conditions of second type are treated both theoretically and computationally. First, the associated interpolation problem is considered. Then, a theorem of existence and uniqueness of the solution to the Lidstone–Euler second-type boundary value problem is given. Finally, for a numerical solution, two different approaches are illustrated and some numerical examples are included to demonstrate the validity and applicability of the proposed algorithms.


2020 ◽  
Vol 12 (1) ◽  
pp. 173-188
Author(s):  
Ya.O. Baranetskij ◽  
P.I. Kalenyuk ◽  
M.I. Kopach ◽  
A.V. Solomko

In this paper we continue to investigate the properties of the problem with nonlocal conditions, which are multipoint perturbations of mixed boundary conditions, started in the first part. In particular, we construct a generalized transform operator, which maps the solutions of the self-adjoint boundary-value problem with mixed boundary conditions to the solutions of the investigated multipoint problem. The system of root functions $V(L)$ of operator $L$ for multipoint problem is constructed. The conditions under which the system $V(L)$ is complete and minimal, and the conditions under which it is the Riesz basis are determined. In the case of an elliptic equation the conditions of existence and uniqueness of the solution for the problem are established.


Author(s):  
Eduard I. Starovoitov ◽  
◽  
Denis V. Leonenko ◽  

Axisymmetric deformation of a three-layer circular plate under repeated alternating loading from the plastic region by a local load is considered. To describe kinematics of asymmetrical on the thickness of the plate pack is adopted the hypothesis of a broken line. In a thin elastic-plastic load-bearing layers are used the hypothesis of Kirchhoff. A non-linearly elastic relatively thick filler is incompressible in thickness. It is taken to be a hypothesis of Tymoshenko regarding the straightness and the incompressibility of the deformed normals with linear approximation of the displacements through the thickness layer. The work of the filler in the tangential direction is taken into account. The physical relations of stress-strain relations correspond to the theory of small elastic-plastic deformations. The effect of heat flow is taken into account. The temperature field in the plate was calculated by the formula obtained by averaging the thermophysical parameters over the thickness of the package. The system of differential equations of equilibrium under loading of the plate from the natural state is obtained by the Lagrange variational method. Boundary conditions on the plate contour are formulated. The solution of the corresponding boundary value problem is reduced to finding the three desired functions: deflection, shear and radial displacement of the shear surface of the filler. A non-uniform system of ordinary nonlinear differential equations is written for these functions. Its analytical iterative solution is obtained in Bessel functions by the method of elastic solutions of Ilyushin. In case of repeated alternating loading of the plate, the solution of the boundary value problem is constructed using the theory of variable loading of Moskvitin. In this case, the hypothesis of similarity of plasticity functions at each loading step is used. Their analytical form is taken independent of the point of unloading. However, the material constants included in the approximation formulas will be different. The cyclic hardening of the material of the bearing layers is taken into account. The parametric analysis of the obtained solutions under different boundary conditions in the case of a local load distributed in a circle is carried out. The influence of temperature and nonlinearity of layer materials on the displacements in the plate is numerically investigated.


Author(s):  
Sergey I. Mitrokhin

The boundary-value problem for an eighth-order differential operator whose potential is a piecewise continuous function on the segment of the operator definition is studied. The weight function is piecewise constant. At the discontinuity points of the operator coefficients, the conditions of "conjugation" must be satislied which follow from physical considerations. The boundary conditions of the studied boundary value problem are separated and depend on several parameters. Thus, we simultaneously study the spectral properties of entire family of differential operators with discontinuous coefficients. The asymptotic behavior of the solutions of differential equations defining the operator is obtained for large values of the spectral parameter. Using these asymptotic expansions, the conditions of "conjugation" are investigated; as a result, the boundary conditions are studied. The equation on eigenvalues of the investigated boundary value problem is obtained. It is shown that the eigenvalues are the roots of some entire function. The indicator diagram of the eigenvalue equation is investigated. The asymptotic behavior of the eigenvalues in various sectors of the indicator diagram is found.


Sign in / Sign up

Export Citation Format

Share Document