Characteristics and Control of the Draft-Tube Flow in Part-Load Francis Turbine

2009 ◽  
Vol 131 (2) ◽  
Author(s):  
Ri-kui Zhang ◽  
Feng Mao ◽  
Jie-Zhi Wu ◽  
Shi-Yi Chen ◽  
Yu-Lin Wu ◽  
...  

Under part-load conditions, a Francis turbine often suffers from very severe low-frequency and large-amplitude pressure fluctuation, which is caused by the unsteady motion of vortices (known as “vortex ropes”) in the draft tube. This paper first reports our numerical investigation of relevant complex flow phenomena in the entire draft tube, based on the Reynolds-averaged Navier–Stokes (RANS) equations. We then focus on the physical mechanisms underlying these complex and somewhat chaotic flow phenomena of the draft-tube flow under a part-load condition. The flow stability and robustness are our special concern, since they determine what kind of control methodology will be effective for eliminating or alleviating those adverse phenomena. Our main findings about the flow behavior in the three segments of the draft tube, i.e., the cone inlet, the elbow segment, and the outlet segment with three exits, are as follows. (1) In the cone segment, we reconfirmed a previous finding of our research group based on the turbine’s whole-flow RANS computation that the harmful vortex rope is an inevitable consequence of the global instability of the swirling flow. We further identified that this instability is caused crucially by the reversed axial flow at the inlet of the draft tube. (2) In the elbow segment, we found a reversed flow continued from the inlet cone, which evolves to slow and chaotic motion. There is also a fast forward stream driven by a localized favorable axial pressure gradient, which carries the whole mass flux downstream. The forward stream and reversed flow coexist side-by-side in the elbow, with a complex and unstable shear layer in between. (3) In the outlet segment with three exits, the forward stream always goes through a fixed exit, leaving the other two exits with a chaotic and low-speed fluid motion. Based on these findings, we propose a few control principles to suppress the reversed flow and to eliminate the harmful helical vortex ropes. Of the methods we tested numerically, a simple jet injection in the inlet is proven successful.

Author(s):  
Ri-Kui Zhang ◽  
Feng Mao ◽  
Jie-Zhi Wu ◽  
Shi-Yi Chen ◽  
Yu-Lin Wu ◽  
...  

By using the Reynolds-averaged Navier-Stokes (RANS) equations, the complex unsteady vortical flow in the entire draft tube of a Francis turbine under a part-load condition, with severe low-frequency pressure fluctuation, is investigated numerically to gain an in-depth understanding of the physical characters of the flow including its stability and robustness, and thereby to seek effective control means to alleviate or even eliminate the strong pressure fluctuation. Our main findings are as follows: In the cone segment of the draft tube, the vortex rope is due to the global instability of the flow caused crucially by the reversed axial flow at the inlet. In the elbow segment of the draft tube, the reversed flow coexists side by side with a fluid channel that carries the mass flux downstream due to favorable axial pressure gradient. In the outlet segment of the draft tube, the mass-flux channel always goes through a fixed outlet, leaving the other two with nearly zero flux. The entire draft-tube flow, although undesired under part-load condition, forms a globally robust system. The principles for effectively controlling this complex flow are proposed. A simple water jet injection at the inlet is numerically proven successful.


2018 ◽  
Vol 30 (1) ◽  
pp. 131-139 ◽  
Author(s):  
Ting Chen ◽  
Xianghao Zheng ◽  
Yu-ning Zhang ◽  
Shengcai Li

Author(s):  
Renfang Huang ◽  
An Yu ◽  
Xianwu Luo ◽  
Bin Ji ◽  
Hongyuan Xu

The pressure vibrations in a draft tube are harmful for the stable operation for a Francis turbine at part load conditions. In this paper, air admission is proposed to depress those pressure vibrations. The unsteady flow in a Francis turbine, whose hydraulic performance has been tested experimentally, is simulated at a part load operation condition. The flow simulation is conducted using RANS methods coupling with SST k-ω turbulence model. The results indicate the pressure vibrations in the turbine are reasonably predicted by the present numerical method. Based on the calculations, the dominant pressure vibration component for a hydro turbine operated at part-load condition is caused by the vortex rope in draft tube, and its frequency is near 0.2 times of the runner rotation frequency. The frequencies of pressure vibration do not change by air admission, and the pressure vibration amplitude decreases with the air admission. Further, the depression effect for pressure vibration would be improved if air admission is from the crown holes instead of the spindle hole. The results also indicate that the turbine hydraulic efficiency changes periodically with the pressure vibration induced by vortex rope in turbine draft tube, would be degraded with air admission from the spindle hole, and improved with air admission from the crown holes. With the increase of air admission, the turbine hydraulic efficiency would improve. The present research will be helpful for the safe operation of Francis turbines.


2021 ◽  
Author(s):  
Subodh Khullar ◽  
Krishna M. Singh ◽  
Michel J. Cervantes ◽  
Bhupendra K. Gandhi

Abstract The presence of excessive swirl at the runner outlet in Francis turbines operating at part load leads to the development of flow instabilities such as the rotating vortex rope (RVR). The presence of RVR causes severe pressure pulsations, power swings, and fatigue damage in the turbine unit. Air and water injection in the draft tube have been reported to reduce the detrimental effects of RVR formation in the Francis turbines. Air injection is one of the oldest and most widely used methods. In contrast, water jet injection is a relatively new methodology. The present work reports the numerical simulations performed to compare the respective effectiveness of these methods to mitigate the RVR and the related flow instabilities. The efficacy of the two methods has been compared based on the pressure pulsations and pressure recovery in the draft tube cone. The results show that the air and water injection influence the draft tube flow field in different ways. Both air and water injection led to a reduction in pressure pulsation magnitudes in the draft tube cone. However, the air injection led to a negative pressure recovery while the water injection improved the draft tube action.


2018 ◽  
Vol 180 ◽  
pp. 02090 ◽  
Author(s):  
Pavel Rudolf ◽  
Jiří Litera ◽  
Germán Alejandro Ibarra Bolanos ◽  
David Štefan

Vortex rope, which induces substantial pressure pulsations, arises in the draft tube (diffuser) of Francis turbine for off-design operating conditions. Present paper focuses on mitigation of those pulsations using active water jet injection control. Several modifications of the original Susan-Resiga’s idea were proposed. All modifications are driven by manipulation of the shear layer region, which is believed to play important role in swirling flow instability. While some of the methods provide results close to the original one, none of them works in such a wide range. Series of numerical experiments support the idea that the necessary condition for vortex rope pulsation mitigation is increasing the fluid momentum along the draft tube axis.


Author(s):  
Muhannad Altimemy ◽  
Justin Caspar ◽  
Alparslan Oztekin

Abstract Computational fluid dynamics simulations are conducted to characterize the spatial and temporal characteristics of the flow field inside a Francis turbine operating in the excess load regime. A high-fidelity Large Eddy Simulation (LES) turbulence model is applied to investigate the flow-induced pressure fluctuations in the draft tube of a Francis Turbine. Probes placed alongside the wall and in the center of the draft tube measure the pressure signal in the draft tube, the pressure over the turbine blades, and the power generated to compare against previous studies featuring design point and partial load operating conditions. The excess load is seen during Francis turbines in order to satisfy a spike in the electrical demand. By characterizing the flow field during these conditions, we can find potential problems with running the turbine at excess load and inspire future studies regarding mitigation methods. Our studies found a robust low-pressure region on the edges of turbine blades, which could cause cavitation in the runner region, which would extend through the draft tube, and high magnitude of pressure fluctuations were observed in the center of the draft tube.


Sign in / Sign up

Export Citation Format

Share Document