Experimental Study of Flow Critical Heat Flux in Alumina-Water, Zinc-Oxide-Water, and Diamond-Water Nanofluids

2009 ◽  
Vol 131 (4) ◽  
Author(s):  
Sung Joong Kim ◽  
Tom McKrell ◽  
Jacopo Buongiorno ◽  
Lin-Wen Hu

It is shown that addition of alumina, zinc-oxide, and diamond particles can enhance the critical heat flux (CHF) limit of water in flow boiling. The particles used here were in the nanometer range (<100 nm) and at low concentration (≤0.1 vol %). The CHF tests were conducted at 0.1 MPa and at three different mass fluxes (1500 kg/m2 s, 2000 kg/m2 s, and 2500 kg/m2 s). The thermal conditions at CHF were subcooled. The maximum CHF enhancement was 53%, 53%, and 38% for alumina, zinc oxide, and diamond, respectively, always obtained at the highest mass flux. A postmortem analysis of the boiling surface reveals that its morphology is altered by deposition of the particles during boiling. Additionally, the wettability of the surface is substantially increased, which seems to correlate well with the observed CHF enhancement.

2013 ◽  
Vol 135 (2) ◽  
Author(s):  
YanFeng Fan ◽  
Ibrahim Hassan

Flow boiling heat transfer in a horizontal microtube with inlet restriction (orifice) under uniform heating condition is experimentally investigated using FC-72 as working fluid. A stainless steel microtube with an inner diameter of 889 μm is selected as main microtube. Two microtubes with smaller diameters are assembled at the inlet of main microtube to achieve the restriction ratios of 50% and 20%. The experimental measurement is carried out at mass fluxes ranging from 160 to 870 kg/m2·s, heat fluxes varying from 6 to 170 kW/m2, inlet temperatures of 23 and 35 °C, and saturation pressures of 10 and 45 kPa. The effects of the orifices on two-phase pressure drop, critical heat flux (CHF), and flow boiling heat transfer coefficient are studied. The results show that the pressure drop caused by the orifice takes a considerable portion in the total pressure drop at low mass fluxes. This ratio decreases as the vapor quality or mass flux increases. The difference of normal critical heat flux in the microtubes with different orifice sizes is negligible. In the aspect of flow boiling heat transfer, the orifice is able to enhance the heat transfer at low mass flux and high saturation pressure, which indicates the contribution of orifice in the nucleate boiling dominated regime. However, the effect of orifice on flow boiling heat transfer is negligible in the forced convective boiling dominated regime.


Author(s):  
Sung Joong Kim ◽  
Tom McKrell ◽  
Jacopo Buongiorno ◽  
Lin-Wen Hu

Nanofluids are known as dispersions of nano-scale particles in solvents. Recent reviews of pool boiling experiments using nanofluids have shown that they have greatly enhanced critical heat flux (CHF). In many practical heat transfer applications, however, it is flow boiling that is of particular importance. Therefore, an experimental study was performed to verify whether or not a nanofluid can indeed enhance the CHF in the flow boiling condition. The nanofluid used in this work was a dispersion of aluminum oxide particles in water at very low concentration (≤0.1 v%). CHF was measured in a flow loop with a stainless steel grade 316 tubular test section of 5.54 mm inner diameter and 100 mm long. The test section was designed to provide a maximum heat flux of about 9.0 MW/m2, delivered by two direct current power supplies connected in parallel. More than 40 tests were conducted at three different mass fluxes of 1,500, 2,000, and 2,500 kg/m2sec while the fluid outlet temperature was limited not to exceed the saturation temperature at 0.1 MPa. The experimental results show that the CHF could be enhanced by as much as 45%. Additionally, surface inspection using Scanning Electron Microscopy reveals that the surface morphology of the test heater has been altered during the nanofluid boiling, which, in turn, provides valuable clues for explaining the CHF enhancement.


Author(s):  
Xiaojuan Niu ◽  
Huaijie Yuan ◽  
Liang Zhao

This paper carried out an experimental study on the critical heat flux during flow boiling of R134a in a vertical helically coiled tube. The length, inner diameter, coil diameter, and pitch of the test tube were 1.85 m, 8 mm, 205 mm, and 25 mm, respectively. Experiments cover the mass flux range of 190–400 kg·m−2·s−1, heat flux of 15–55 kW·m−2, inlet pressure of 0.8–1.1 MPa, and inlet vapor quality of 0.01–0.35. The effects of critical heat flux identification method, mass flux, system pressure, and inlet vapor quality on critical heat flux were presented. The critical heat flux obtained by the wall temperature rise method was larger than that obtained by the wall temperature oscillation method. The deviation of the critical heat flux corresponding to two methods, including wall temperature rises sharply above 10 ℃ and wall temperature drastic oscillation, was about 20% under the present experimental conditions. The critical heat flux increased with mass flux while it decreased with the inlet vapor quality and pressure. The experiment data were compared with four existing empirical correlations. A new correlation is proposed for critical heat flux prediction in vertical helical tubes.


Author(s):  
Anand P. Roday ◽  
Michael K. Jensen

The critical heat flux (CHF) condition sets an upper limit on the flow-boiling heat transfer process. With the growing demand for the use of two-phase flow in micro and nano-sized devices, there is a strong need to understand the CHF phenomenon in channels of such small dimensions. This study experimentally investigates the critical heat flux condition during flow boiling in a single stainless steel microtube of two different diameters—0.427mm, and 0.286 mm. Degassed water is the working fluid. The effects of various parameters—diameter, mass flux (350–1500 kg/m2s), inlet subcooling (2°C–50°C), and length-to-diameter ratio (75–200) on the CHF condition are studied for the exit condition being nearly atmospheric pressure. The CHF increases with an increase in mass flux. The effect of the inlet subcooling on the CHF condition is more complex. With a decreasing inlet subcooling, the CHF decreases until saturated liquid is reached; thereafter, the CHF increases with quality.


Author(s):  
Bao Truong ◽  
Lin-wen Hu ◽  
Jacopo Buongiorno ◽  
Thomas McKrell

Nanofluids are engineered colloidal dispersions of nano-sized particle in common base fluids. Previous pool boiling studies have shown that nanofluids can improve critical heat flux (CHF) up to 200% for pool boiling and up to 50% for subcooled flow boiling due to the boiling induced nanoparticle deposition on the heated surface. Motivated by the significant CHF enhancement of nanoparticle deposited surface, this study investigated experimentally the subcooled flow boiling heat transfer of pre-coated test sections in water. Using a separate coating loop, stainless steel test sections were treated via flow boiling of alumina nanofluids at constant heat flux and mass flow rate. The pre-coated test sections were then used in another loop to measure subcooled flow boiling heat transfer coefficient and CHF with water. The CHF values for the pre-coated tubing were found on average to be 28% higher than bare tubing at high mass flux G = 2500 kg/m2 s. However, no enhancement was found at lower mass flux G = 1500 kg/m2 s. The heat transfer coefficients did not differ much between experiments when the bare or coated tubes were used. SEM images of the test sections confirm the presence of a nanoparticle coating layer. The nanoparticle deposition is sporadic and no relationship between the coating pattern and the amount of CHF enhancement is observed.


Author(s):  
Qian You ◽  
Ibrahim Hassan ◽  
Lyes Kadem

The experiments are conducted to study the flow boiling instability in a single microtube with 0.889 mm hydraulic diameter in vertical upward and downward flow directions (VU and VD). The subcooled dielectric liquid FC-72 is driven at mass fluxes varying from 700 to 1400 kg/m2·s, and the heat flux uniformly applied on the microtube surface is up to 9.6 W/cm2. The onsets of flow oscillations (OFIs) in both flow directions are observed. Their oscillation types and characteristics are presented as well. The effects of mass flux and heat flux on flow instability in vertical flow directions are discussed. The results show that as the mass flux increases, the OFI occurrence is postponed, and the compounded oscillation types (Ledinegg, pressure drop and density wave oscillations) turn to pressure drop type dominant. At low mass fluxes, the OFI appears earlier in VD than in VU due to the buoyancy force impeded the bubble discharging. As the mass flux increases, the OFI appearance in VD is close to the ones in VU and its flow oscillations tend to be re-stabilized. After OFIs appeared at a given mass flux, with more heat flux added, the density wave oscillation type in VU becomes more active. However, at a constant mass flux, as the heat flux increases, the flow instability in VD becomes “stable” which may be due to the rapid flow pattern change, and this kind of “stable” is not expected because the local dryout may accompany. Hence, the microtube with vertical upward flow direction (VU) performs better from flow boiling instability point of view.


1992 ◽  
Vol 114 (1) ◽  
pp. 179-184 ◽  
Author(s):  
K. M. Leroux ◽  
M. K. Jensen

The critical heat flux (CHF) on a single tube in a horizontal bundle subject to an upward crossflow of R113 has been studied in three bundle geometries. Effects of local quality, mass flux, pressure, and bundle geometry on the CHF were investigated. The shapes of the CHF-quality curves display three distinct patterns, which progress from one to another as mass flux increases. At low mass fluxes, the CHF data monotonically decreased with increasing quality. At intermediate mass fluxes with increasing quality, the CHF data initially decreased to a relative minimum, then increased to a relative maximum, and finally began to decrease again as the higher qualities were reached. At high mass fluxes, as quality increased, the CHF rose gradually from the zero quality value to a maximum and then began to decrease. For all mass fluxes, the zero-quality CHF points clustered around an average value, which varied slightly with test section geometry. Mechanisms for the CHF condition are suggested.


Author(s):  
Brent A. Odom ◽  
Carlos A. Ortiz ◽  
Patrick E. Phelan

The benefits of eliminating instabilities in two-phase microchannel flow with inlet orifices come with costs. This study describes the tradeoffs between microchannels with and without inlet orifices, focusing on results from critical heat flux data obtained for various orifice sizes and mass fluxes. An adjustable inlet orifice controlled with a micrometer was placed in front of an array of 31 parallel microchannels each with a hydraulic diameter of 0.235 mm and a length of 1.33 cm. For mass fluxes ranging from 186 kg m−2 s−1 to 847 kg m−2 s−1, critical heat flux (CHF) data were obtained for 7 different orifice sizes. For low flow rates that provided a low quality saturated inlet condition, the difference in CHF values was found to be minimal between open and almost closed orifice conditions. The smallest orifice achieved a CHF value of 5 W cm−2 less than the largest orifice size for a mass flux of 186 kg m−2 s−1, and 7 W cm−2 less for a mass flux of 433 kg m−2 s−1. For mass fluxes higher than 433 kg m−2 s−1, subcooled conditions were present at the orifice inlet, and the highest CHF values occurred with an orifice hydraulic diameter of 35 percent of fully open. For the higher mass flux cases, orifice sizes in the range of 1.8 percent to 28 percent of fully open caused CHF to occur at lower values than less restrictive orifice sizes. This was due to loss of cooling capacity from rapid pressure drop through the orifice. Slightly higher average channel pressures also decrease the refrigerant’s latent heat of vaporization. For the orifice sizes from 35 to 70 percent of unrestricted flow, a very minimal increase in pressure drop over fully open inlet conditions occurred and the general trend was higher CHF values. Very small inlet orifices are beneficial for steady state conditions that do not approach CHF; however, overly restricting the flow at the inlet to microchannels reduces cooling capacity significantly and will cause early onset of CHF. A slightly restrictive inlet orifice will increase CHF.


Sign in / Sign up

Export Citation Format

Share Document