Age-Dependent Influence of Strain Rate on the Tensile Failure of Rat-Tail Tendon

1983 ◽  
Vol 105 (3) ◽  
pp. 296-299 ◽  
Author(s):  
R. C. Haut

Sensitivity of tensile strength, failure strain, and failure energy density to strain rate was studied for rat-tail tendon (RTT), a collagen-rich connective tissue. Tendons from animals aged 1–27 months were stretched at a high (720 percent/s) and low (3.6 percent/s) strain rate. Each failure parameter increased with strain rate. However, the sensitivity of tendon failure to rate of strain decreased rapidly during growth and sexual maturation of the animal. The study provides basic data on the rate-sensitive strength of collagen fibers using RTT.

1985 ◽  
Vol 107 (2) ◽  
pp. 166-174 ◽  
Author(s):  
R. C. Haut

While the tensile failure properties of rat-tail tendon depend on strain rate, the sensitivity to strain rate decreases with age, especially during sexual maturation. The object of this study was to determine the effect of an experimental model of chronic lathyrism on age-dependent changes in the sensitivity of developing tendon strength to strain rate. Tensile failure experiments were conducted at high and low strain rate on tendons excised from test and control animals aged 1 to 6 mo. The tensile “yield” response of tendon was significantly affected by the diet resulting in a reduced tensile strength and failure strain. While the sensitivity of tendon failure to strain rate was slightly elevated by the experimental diet, age-dependent changes compared with controls. Since the diet supplement is thought to inhibit covalent crosslinking of collagen in the developing tendon, other factors are likely responsible for decrease in the sensitivity of tendon strength to strain rate during maturation.


2011 ◽  
Vol 117-119 ◽  
pp. 62-66
Author(s):  
Wan Peng Wang ◽  
Yong Le Hu ◽  
Xing Tao Ren ◽  
Yi Bo Xiong ◽  
Liang Ying

In order to systematically study on dynamic mechanics character of granite, impact compression experiments and impact flattened Brazilian disc specimens of granite have been investigated with modified split Hopkinson pressure bar (SHPB) experimental facility, curve about stress versus strain and other parameter at strain rates of 23.9/s~108.4/s were obtained from impact compression. The dynamic tensile strength and critical tensile failure strain at strain rates of 2.3/s~25.6/s were obtained from impact flattened Brazilian. The experimental result show that dynamic compression strength , elastic modulus and failure strain,dynamic tensile strength significantly increase comparing to quasi-static experiment, and the above mechanics parameter include dynamic strength etc will increase with strain rate increasing, granite have the character of impact harding and ductility enhancement. The failure degree of failure will increase with increasing strain rate under impact compression; the failure configurations of the specimens present an center splitting mode under impact flattened Brazilian experiments. Whether impact compression or impact splitting under strain rate including this paper ’s experiments, the relationship between the DIFC or DIFT and the logarithm of strain rate is linear.


2019 ◽  
Vol 54 (11) ◽  
pp. 1453-1466 ◽  
Author(s):  
Hongxu Wang ◽  
Paul J Hazell ◽  
Krishna Shankar ◽  
Evgeny V Morozov ◽  
Zlatko Jovanoski ◽  
...  

This paper presents the details of experimental work on characterising the tensile properties of UHMWPE (Spectra® 1000) single yarns at different strain rates from 3.3 × 10−5 to 400/s. According to the measured stress–strain curves, there was a transition from ductile to brittle behaviour as the strain rate increased from 3.3 × 10−5 to 0.33/s; the tensile properties were highly sensitive to strain rate in this range. Specifically, the tensile strength and Young’s modulus increased distinctly with increasing strain rate while the failure strain and toughness decreased. However, these tensile properties were not dependent on strain rate over the range from 0.33 to 400/s. The results showed that the measured tensile strength, failure strain and Young’s modulus were independent of the tested gauge lengths (25 and 50 mm). Moreover, yarn type (warp and weft) had a noticeable effect on tensile strength, but the effect of yarn type on failure strain and Young’s modulus was negligible. The microscopic examination of fractured fibres’ ends revealed that fibrillation and axial splitting were the dominant fracture modes at low strain rates, while the fibres failed in a more brittle manner with little fibrillation at high strain rates.


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1491
Author(s):  
Yujin Yang

Carbon fiber-reinforced plastic (CFRP) is a promising material to achieve lightweight automotive components. The effects of the strain rate and configurations of CFRP on dynamic tensile properties have not yet been fully explored; thus, its lightweight benefits cannot be maximized. In this paper, the dynamic tensile properties of CFRPs, tested using two different processes with two different resins and four different configurations, were studied with a strain rate from 0.001 to 500 s−1. The tensile strength, modulus, failure strain, and fracture mechanism were analyzed. It was found that the dynamic performance enhances the strength and modulus, whereas it decreases the failure strain. The two processes demonstrated the same level of tensile strength but via different fracture mechanisms. Fiber orientation also significantly affects the fracture mode of CFRP. Resins and configurations both have an influence on strain rate sensitivity. An analytic model was proposed to examine the strain rate sensitivity of CFRPs with different processes and configurations. The proposed model agreed well with the experimental data, and it can be used in simulations to maximize the lightweight properties of CFRP.


2021 ◽  
pp. 105678952110441
Author(s):  
Wenxuan Yu ◽  
Liu Jin ◽  
Xi Liu ◽  
Xiuli Du

A comprehensive finite element analysis at the mesoscopic level has been conducted into the complex topic of size effect coupling dynamic strain-rates. Taking the lightweight aggregate concrete (LWAC) dumbbell-shaped samples as the object of numerical investigation, the influence of strain-rate (with the range of 10−5/s ∼ 100/s) on direct-tensile failure of LWAC (including different lightweight aggregate volume fractions [Formula: see text] = 40%, 30% and 20%) was discussed. Subsequently, the structure size of LWAC samples was further expanded (width W = 100, 200 and 300 mm) and the dynamic size effect on direct-tensile strength was investigated. Numerical results show that both the direct-tensile strength and its corresponding size effect of LWAC exhibit a strain-rate dependent behaviour. The increasing strain-rate can gradually weaken the size effect of LWAC and direct-tensile strength would be independent to the structure size as the strain-rate reaches the critical strain-rate. The increasing lightweight aggregate volume fraction can reduce direct-tensile strength. Furthermore, a dynamic size effect model establishing the direct link between the strain-rate effect and size effect was proposed, which can quantitatively predict the dynamic direct-tensile strength of LWAC.


1959 ◽  
Vol 43 (2) ◽  
pp. 265-283 ◽  
Author(s):  
Bernard J. Rigby ◽  
Nishio Hirai ◽  
John D. Spikes ◽  
Henry Eyring

The load-strain and stress-relaxation behavior of wet rat tail tendon has been examined with respect to the parameters strain, rate of straining, and temperature. It is found that this mechanical behavior is reproducible after resting the tendon for a few minutes after each extension so long as the strain does not exceed about 4 per cent. If this strain is exceeded, the tendon becomes progressively easier to extend but its length still returns to the original value after each extension. Extensions of over 35 per cent can be reached in this way. Temperature has no effect upon the mechanical behavior over the range 0–37°C. Just above this temperature, important changes take place in the mechanical properties of the tendon which may have biological significance. The application of the techniques used here to studies of connective tissue disorders is suggested. Some of the mechanical properties of tendon have been interpreted with a simple model.


2011 ◽  
Vol 261-263 ◽  
pp. 187-191
Author(s):  
Wan Peng Wang ◽  
Yong Le Hu ◽  
Xin Tao Ren ◽  
Yi Bo Xiong ◽  
Kang Zhao ◽  
...  

In order to systematically study dynamic mechanics character of reactive powder concrete (RPC), impact compression experiments and impact flattened Brazilian disc specimens of RPC have been investigated with modified split Hopkinson pressure bar (SHPB) experimental facility using brass pulse shaper, curves about stress versus strain and other parameters at strain rates of 20.3/s~137.0/s were obtained from impact compression. The dynamic tensile strength and tensile failure strain at strain rates of 3.4/s~26.2/s were obtained from impact flattened Brazilian. For comparison, the quasi-static compress and split tension of RPC were obtained with an MTS 810 materials test system and CSS-88500 electron universal material testing machine.The experimental result show that dynamic compression strength , elastic modulus and failure strain,dynamic tensile strength and failure strain significantly increase comparing to quasi-static experiment, RPC have the character of impact harding and ductility enhancement. RPC exhibit excellent failure patterns at high strain rate. Whether impact compression or impact splitting under strain rate including this paper ’s experiments, the relationship between the DIFC or DIFT and the logarithm of strain rateis linear.


Sign in / Sign up

Export Citation Format

Share Document