Causal Theories of Evolution and Wave Propagation in Mathematical Physics

1989 ◽  
Vol 42 (11) ◽  
pp. 305-322 ◽  
Author(s):  
M. Kranysˇ

There are still many phenomena, especially in continuum physics, that are described by means of parabolic partial differential equations whose solution are not compatible with the causality principle. Compatibility with this principle is required also by the theory of relativity. A general form of hyperbolic operators for the most frequently occurring linear governing equations in mathematical physics is written down. It is then easy to convert any given parabolic equation to the hyperbolic form without necessarily entering into the cause of the inadequacy of the governing equation. The method is verified on the well-known example of Timoshenko’s correction of the Bernoulli–Euler–Rayleigh beam equation for flexural motion. The “Love–Rayleigh” fourth-order differential equations for the longitudinal and torsional wave propagation in the rod is generalized with this method. The hyperbolic version (not to mention others) of the linear Korteweg–de Vries equation and of the “telegraph” equation governing electromagnetic wave propagation through relaxing material are given. Lagrangians of all the equations studied are listed. For all the reasons given we believe the hyperbolic governing equations to be physically and mathematically more realistic and adequate.

2021 ◽  
Vol 2091 (1) ◽  
pp. 012069
Author(s):  
A G Kushner ◽  
E N Kushner

Abstract The paper proposes an approach for constructing exact solutions of differential equations of mathematical physics, in particular, the telegraph equation. The method is based on the theory of finite-dimensional dynamics of systems of evolutionary differential equations. This theory is a natural extension of the theory of dynamical systems to partial differential equations. It allows one to construct exact solutions of partial differential equations even in the case when equations do not have symmetry algebras sufficient for integration.


Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 545-554
Author(s):  
Asghar Ali ◽  
Aly R. Seadawy ◽  
Dumitru Baleanu

AbstractThis article scrutinizes the efficacy of analytical mathematical schemes, improved simple equation and exp(-\text{Ψ}(\xi ))-expansion techniques for solving the well-known nonlinear partial differential equations. A longitudinal wave model is used for the description of the dispersion in the circular rod grounded via transverse Poisson’s effect; similarly, the Boussinesq equation is used for extensive wave propagation on the surface of water. Many other such types of equations are also solved with these techniques. Hence, our methods appear easier and faster via symbolic computation.


2012 ◽  
Vol 28 (3) ◽  
pp. 513-522 ◽  
Author(s):  
H. M. Khanlo ◽  
M. Ghayour ◽  
S. Ziaei-Rad

AbstractThis study investigates the effects of disk position nonlinearities on the nonlinear dynamic behavior of a rotating flexible shaft-disk system. Displacement of the disk on the shaft causes certain nonlinear terms which appears in the equations of motion, which can in turn affect the dynamic behavior of the system. The system is modeled as a continuous shaft with a rigid disk in different locations. Also, the disk gyroscopic moment is considered. The partial differential equations of motion are extracted under the Rayleigh beam theory. The assumed modes method is used to discretize partial differential equations and the resulting equations are solved via numerical methods. The analytical methods used in this work are inclusive of time series, phase plane portrait, power spectrum, Poincaré map, bifurcation diagrams, and Lyapunov exponents. The effect of disk nonlinearities is studied for some disk positions. The results confirm that when the disk is located at mid-span of the shaft, only the regular motion (period one) is observed. However, periodic, sub-harmonic, quasi-periodic, and chaotic states can be observed for situations in which the disk is located at places other than the middle of the shaft. The results show nonlinear effects are negligible in some cases.


2018 ◽  
Vol 5 (2) ◽  
pp. 171717 ◽  
Author(s):  
Srivatsa Bhat K ◽  
Ranjan Ganguli

In this paper, we look for non-uniform Rayleigh beams isospectral to a given uniform Rayleigh beam. Isospectral systems are those that have the same spectral properties, i.e. the same free vibration natural frequencies for a given boundary condition. A transformation is proposed that converts the fourth-order governing differential equation of non-uniform Rayleigh beam into a uniform Rayleigh beam. If the coefficients of the transformed equation match with those of the uniform beam equation, then the non-uniform beam is isospectral to the given uniform beam. The boundary-condition configuration should be preserved under this transformation. We present the constraints under which the boundary configurations will remain unchanged. Frequency equivalence of the non-uniform beams and the uniform beam is confirmed by the finite-element method. For the considered cases, examples of beams having a rectangular cross section are presented to show the application of our analysis.


2017 ◽  
Vol 2017 ◽  
pp. 1-2
Author(s):  
Rehana Naz ◽  
Mariano Torrisi ◽  
Igor Leite Freire ◽  
Imran Naeem

1998 ◽  
Vol 12 (05) ◽  
pp. 601-607 ◽  
Author(s):  
M. Andrecut

Wave propagation in excitable media provides an important example of spatiotemporal self-organization. The Belousov–Zhabotinsky (BZ) reaction and the impulse propagation along nerve axons are two well-known examples of this phenomenon. Excitable media have been modelled by continuous partial differential equations and by discrete cellular automata. Here we describe a simple three-states cellular automaton model based on the properties of excitation and recovery that are essential to excitable media. Our model is able to reproduce the dynamics of patterns observed in excitable media.


Sign in / Sign up

Export Citation Format

Share Document