The Theory of Kinematic Parameter Identification for Industrial Robots

1988 ◽  
Vol 110 (1) ◽  
pp. 96-100 ◽  
Author(s):  
L. J. Everett ◽  
Tsing-Wong Hsu

This paper presents the concept of completeness for kinematic identification of robot manipulators. Completeness is defined as the ability to map joint positions into tool positions for all arbitrary manipulators. It is suggested that complete models must contain a certain number of independent parameters. Furthermore it is suggested (and shown by practical examples) that the required number of independent kinematic parameters is easy to determine a-priori. This enables one to check a model for completeness. Although the basic idea behind kinematic identification may have been considered well known, several identification algorithms in the recent literature are incomplete. Two examples are included in this paper. For this reason, this paper presents the topic and includes the conditions for a complete and viable identification algorithm.

Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Guanbin Gao ◽  
Fei Liu ◽  
Hongjun San ◽  
Xing Wu ◽  
Wen Wang

A novel hybrid algorithm that employs BP neural network (BPNN) and particle swarm optimization (PSO) algorithm is proposed for the kinematic parameter identification of industrial robots with an enhanced convergence response. The error model of the industrial robot is established based on a modified Denavit-Hartenberg method and Jacobian matrix. Then, the kinematic parameter identification of the industrial robot is transformed to a nonlinear optimization in which the unknown kinematic parameters are taken as optimal variables. A hybrid algorithm based on a BPNN and the PSO is applied to search for the optimal variables which are used to compensate for the error of the kinematic parameters and improve the positioning accuracy of the industrial robot. Simulations and experiments based on a realistic industrial robot are all provided to validate the efficacy of the proposed hybrid identification algorithm. The results show that the proposed parameter-identification method based on the BPNN and PSO has fewer iterations and faster convergence speed than the standard PSO algorithm.


Robotica ◽  
2019 ◽  
Vol 37 (5) ◽  
pp. 837-850
Author(s):  
Genliang Chen ◽  
Lingyu Kong ◽  
Qinchuan Li ◽  
Hao Wang

SummaryKinematic calibration plays an important role in the improvement of positioning accuracy for parallel manipulators. Based on the specific geometric constraints of limbs, this paper presents a new kinematic parameter identification method for the widely studied 3-PRS parallel manipulator. In the proposed calibration method, the planes where the PRS limbs exactly located are identified firstly as the geometric characteristics of the studied parallel manipulator. Then, the limbs can be considered as planar PR mechanisms whose kinematic parameters can be determined conveniently according to the limb planes identified in the first step. The main merit of the proposed calibration method is that the system error model which relates the manipulator’s kinematic errors to the output ones is not required for kinematic parameter identification. Instead, only two simple geometric problems need to be established for identification, which can be solved readily using gradient-based searching algorithms. Hence, another advantage of the proposed method is that parameter identification of the manipulator’s limbs can be accomplished individually without interactive impact on each other. In order to validate the effectiveness and efficiency of the proposed method, calibration experiments are conducted on an apparatus of the studied 3-PRS parallel manipulator. The results show that using the proposed two-step calibration method, the kinematic parameters can be identified quickly by means of gradient searching algorithm (converge within five iterations for both steps). The positioning accuracy of the studied 3-PRS parallel manipulator has been significantly improved by compensation according to the identified parameters. The mean position and orientation errors at the validation configurations have been reduced to 1.56 × 10−4 m and 1.13 × 10−3 rad, respectively. Further, the proposed two-step kinematic calibration method can be extended to other limited-degree-of-freedom parallel manipulators, if proper geometric constraints can be characterized for their kinematic limbs.


2014 ◽  
Vol 889-890 ◽  
pp. 1136-1143
Author(s):  
Yong Gui Zhang ◽  
Chen Rong Liu ◽  
Peng Liu

For an industrial robots with unknown parameters, on the basis of preliminary measurement and data of the Cartesian and joints coordinates which are shown on the FlexPendant, the kinematic parameters is identified by using genetic algorithms and accurate kinematics modeling of the robot is established. Experimental data could prove the validity of this method.


2014 ◽  
Vol 21 (2) ◽  
pp. 233-246 ◽  
Author(s):  
Agustín Brau ◽  
Margarita Valenzuela ◽  
Jorge Santolaria ◽  
Juan José Aguilar

Abstract This paper presents a comparison of different techniques to capture nominal data for its use in later verification and kinematic parameter identification procedures for articulated arm coordinate measuring machines (AACMM). By using four different probing systems (passive spherical probe, active spherical probe, self-centering passive probe and self-centering active probe) the accuracy and repeatability of captured points has been evaluated by comparing these points to nominal points materialized by a ball-bar gauge distributed in several positions of the measurement volume. Then, by comparing these systems it is possible to characterize the influence of the force over the final results for each of the gauge and probing system configurations. The results with each of the systems studied show the advantages and original accuracy obtained by active probes, and thus their suitability in verification (active probes) and kinematic parameter identification (self-centering active probes) procedures.


Sign in / Sign up

Export Citation Format

Share Document