Flame Transfer Functions for Liquid-Fueled Swirl-Stabilized Turbulent Lean Direct Fuel Injection Combustion

Author(s):  
Tongxun Yi ◽  
Domenic A. Santavicca

Heat release rate responses to inlet fuel modulations, i.e., the flame transfer function (FTF), are measured for a turbulent, liquid-fueled, swirl-stabilized lean direct fuel injection combustor. Fuel modulations are achieved using a motor-driven rotary fuel valve designed specially for this purpose, which is capable of fuel modulations of up to 1 kHz. Small-amplitude fuel modulations, typically below 2.0% of the mean fuel, are applied in this study. There is almost no change in FTFs at different fuel-modulation amplitudes, implying that the derived FTFs are linear and that the induced heat release rate oscillations mainly respond to variations in the instantaneous fuel flow rate rather than in the droplet size and distribution. The gain and phases of the FTFs at different air flow rates and preheat temperatures are examined. The instantaneous fuel flow rate is determined from pressure measurements upstream of a fuel nozzle. Applications of the FTF to modeling and control of combustion instability and lean blowout are discussed.

Author(s):  
Tongxun Yi ◽  
Domenic A. Santavicca

Heat release rate responses to inlet fuel modulations, i.e. the flame transfer function (FTF), are measured for a turbulent, liquid-fueled, swirl-stabilized, LDI combustor. Fuel modulations are achieved using a motor-driven rotary fuel valve designed specially for this purpose, which is capable of fuel modulations up to 1 kHz. Small-amplitude fuel modulations, typically below 2.0% of the mean fuel, are applied in this study. There is almost no change in FTFs at different fuel modulation amplitude, implying that the derived FTFs are linear and that the induced heat release rate oscillations mainly respond to variations in the instantaneous fuel flow rate rather than in the droplet size and distribution. The gain and phases of the FTFs at different air flow rates and preheat temperature are examined. The instantaneous fuel flow rate is determined from pressure measurements upstream of a fuel nozzle. Applications of the FTF to modeling and control of combustion instability and lean blowout are discussed. Near-LBO stability enhancement using small-amplitude fuel modulation based on the output of a LQG controller is numerically demonstrated.


Author(s):  
Janith Samarasinghe ◽  
Wyatt Culler ◽  
Bryan D. Quay ◽  
Domenic A. Santavicca ◽  
Jacqueline O’Connor

Fuel staging, or fuel splitting, is a commonly used strategy for the suppression of combustion instabilities in gas turbine engines. In multi-nozzle combustor configurations, this is achieved by varying the fuel flow rate to the different nozzles. The effect of fuel staging on flame stabilization and heat release rate distribution (referred to as flame structure), and self-excited instability characteristics is investigated in a research can combustor employing five small-scale lean-premixed industrial nozzles. The nozzles are arranged in a “four-around-one” configuration and fuel staging is achieved by injecting additional fuel to the middle nozzle. An operating condition was identified where all five nozzles were fueled equally and the combustor was subject to a self-excited instability. At the operating condition considered, the self-excited instabilities are suppressed with fuel staging: this is true for cases where overall equivalence ratio is increased by staging (by only increasing the fuel flow rate to the middle nozzle) as well as cases where overall equivalence ratio is kept constant while staging (by simultaneously decreasing the fuel flow rate of the outer nozzles while increasing the fuel flow rate to the middle nozzle). Fuel staging causes variations in the distribution of time-averaged heat release rate in the regions where adjacent flames interact. The locations of highest heat release rate fluctuation are not altered with increased fuel staging but the fluctuation amplitude is reduced. A breakup in the monotonic phase behavior that is characteristic of convective disturbances is observed with increased fuel staging, resulting in a lower pressure fluctuation amplitude. In particular, the monotonic variation in phase in the middle flame and the region where adjacent flames interact is out-of-phase with that of the outer flames, resulting in a cancellation of the global heat release rate oscillations. The distribution of local Rayleigh integral within the combustor shows that during a self-excited instability, the regions of highest heat release rate fluctuation are in phase-with the pressure fluctuation. When staging fuel is introduced, these regions fluctuate out-of-phase with the pressure fluctuation, further illustrating that fuel staging suppresses instabilities by altering the phase relationship of convective disturbances that travel along the flame front.


Author(s):  
Bernhard C. Bobusch ◽  
Bernhard Ćosić ◽  
Jonas P. Moeck ◽  
Christian Oliver Paschereit

Equivalence ratio fluctuations are known to be one of the key factors controlling thermoacoustic stability in lean premixed gas turbine combustors. The mixing and thus the spatio-temporal evolution of these perturbations in the combustor flow is, however, difficult to account for in present low-order modeling approaches. To investigate this mechanism, experiments in an atmospheric combustion test rig are conducted. To assess the importance of equivalence ratio fluctuations in the present case, flame transfer functions for different injection positions are measured. By adding known perturbations in the fuel flow using a solenoid valve, the influence of equivalence ratio oscillations on the heat release rate is investigated. The spatially and temporally resolved equivalence ratio fluctuations in the reaction zone are measured using two optical chemiluminescence signals, captured with an intensified camera. A steady calibration measurement allows for the quantitative assessment of the equivalence ratio fluctuations in the flame. This information is used to obtain a mixing transfer function, which relates fluctuations in the fuel flow to corresponding fluctuations in the equivalence ratio of the flame. The current study focuses on the measurement of the global, spatially integrated, transfer function for equivalence ratio fluctuations and the corresponding modeling. In addition, the spatially resolved mixing transfer function is shown and discussed. The global mixing transfer function reveals that despite the good spatial mixing quality of the investigated generic burner, the ability to damp temporal fluctuations at low frequencies is rather poor. It is shown that the equivalence ratio fluctuations are the governing heat release rate oscillation response mechanism for this burner in the low-frequency regime. The global transfer function for equivalence ratio fluctuations derived from the measurements is characterized by a pronounced low-pass characteristic, which is in good agreement with the presented convection–diffusion mixing model.


Author(s):  
Bernhard C. Bobusch ◽  
Bernhard Ćosić ◽  
Jonas P. Moeck ◽  
Christian Oliver Paschereit

Equivalence ratio fluctuations are known to be one of the key factors controlling thermoacoustic stability in lean premixed gas turbine combustors. The mixing and thus the spatiotemporal evolution of these perturbations in the combustor flow is, however, difficult to account for in present low-order modeling approaches. To investigate this mechanism, experiments in an atmospheric combustion test rig are conducted. To assess the importance of equivalence ratio fluctuations in the present case, flame transfer functions for different injection positions are measured. By adding known perturbations in the fuel flow using a solenoid valve, the influence of equivalence ratio oscillations on the heat release rate is investigated. The equivalence ratio fluctuations in the reaction zone are measured spatially and temporally resolved using two optical chemiluminescence signals, captured with an intensified camera. A steady calibration measurement allows for the quantitative assessment of the equivalence ratio fluctuations in the flame. This information is used to obtain a mixing transfer function, which relates fluctuations in the fuel flow to corresponding fluctuations in the equivalence ratio of the flame. The current study focuses on the measurement of the global, spatially integrated, transfer function for equivalence ratio fluctuations and the corresponding modeling. In addition, the spatially resolved mixing transfer function is shown and discussed. The global mixing transfer function reveals that, despite the good spatial mixing quality of the investigated generic burner, the ability to damp temporal fluctuations at low frequencies is rather poor. It is shown that the equivalence ratio fluctuations are the governing heat release rate oscillation response mechanism for this burner in the low-frequency regime. The global transfer function for equivalence ratio fluctuations derived from the measurements is characterized by a pronounced low-pass characteristic, which is in good agreement with the presented convection–diffusion mixing model.


2021 ◽  
Vol 11 (7) ◽  
pp. 3247
Author(s):  
Dong Hwan Kim ◽  
Chi Young Lee ◽  
Chang Bo Oh

In this study, the effects of discharge area and atomizing gas type in a twin-fluid atomizer on heptane pool fire-extinguishing performance were investigated under the heat release rate conditions of 1.17 and 5.23 kW in an enclosed chamber. Large and small full cone twin-fluid atomizers were prepared. Nitrogen and air were used as atomizing gases. With respect to the droplet size of water mist, as the water and air flow rates decreased and increased, respectively, the Sauter mean diameter (SMD) of the water mist decreased. The SMD of large and small atomizers were in the range of approximately 12–60 and 12–49 μm, respectively. With respect to the discharge area effect, the small atomizer exhibited a shorter extinguishing time, lower peak surface temperature, and higher minimum oxygen concentration than the large atomizer. Furthermore, it was observed that the effect of the discharge area on fire-extinguishing performance is dominant under certain flow rate conditions. With respect to the atomizing gas type effect, nitrogen and air appeared to exhibit nearly similar extinguishing times, peak surface temperatures, and minimum oxygen concentrations under most flow rate conditions. Based on the present and previous studies, it was revealed that the effect of atomizing gas type on fire-extinguishing performance is dependent on the relative positions of the discharged flow and fire source.


Author(s):  
Uyi Idahosa ◽  
Saptarshi Basu ◽  
Ankur Miglani

This paper reports an experimental investigation of dynamic response of nonpremixed atmospheric swirling flames subjected to external, longitudinal acoustic excitation. Acoustic perturbations of varying frequencies (fp = 0–315 Hz) and velocity amplitudes (0.03 ≤ u′/Uavg ≤ 0.30) are imposed on the flames with various swirl intensities (S = 0.09 and 0.34). Flame dynamics at these swirl levels are studied for both constant and time-dependent fuel flow rate configurations. Heat release rates are quantified using a photomultiplier (PMT) and simultaneously imaged with a phase-locked CCD camera. The PMT and CCD camera are fitted with 430 nm ±10 nm band pass filters for CH* chemiluminescence intensity measurements. Flame transfer functions and continuous wavelet transforms (CWT) of heat release rate oscillations are used in order to understand the flame response at various burner swirl intensity and fuel flow rate settings. In addition, the natural modes of mixing and reaction processes are examined using the magnitude squared coherence analysis between major flame dynamics parameters. A low-pass filter characteristic is obtained with highly responsive flames below forcing frequencies of 200 Hz while the most significant flame response is observed at 105 Hz forcing mode. High strain rates induced in the flame sheet are observed to cause periodic extinction at localized regions of the flame sheet. Low swirl flames at lean fuel flow rates exhibit significant localized extinction and re-ignition of the flame sheet in the absence of acoustic forcing. However, pulsed flames exhibit increased resistance to straining due to the constrained inner recirculation zones (IRZ) resulting from acoustic perturbations that are transmitted by the co-flowing air. Wavelet spectra also show prominence of low frequency heat release rate oscillations for leaner (C2) flame configurations. For the time-dependent fuel flow rate flames, higher un-mixedness levels at lower swirl intensity is observed to induce periodic re-ignition as the flame approaches extinction. Increased swirl is observed to extend the time-to-extinction for both pulsed and unpulsed flame configurations under time-dependent fuel flow rate conditions.


2021 ◽  
Author(s):  
Meysam Sahafzadeh ◽  
Seth B. Dworkin ◽  
Larry W. Kostiuk

The stretched laminar flame model provides a convenient approach to embed realistic chemical kinetics when simulating turbulent premixed flames. When positive-only periodic strain rates are applied to a laminar flame there is a notable phase lag and diminished amplitude in heat release rate. Similar results have being observed with respect to the other component of stretch rate, namely the unsteady motion of a curved flame when the stretch rates are periodic about zero. Both cases showed that the heat release rate or consumption speed of these laminar-premixed flames vary significantly from the quasi-steady flamelet model. Deviation from quasi-steady behaviour increases as the unsteady flow time scale approaches the chemical time scale that is set by the stoichiometry. A challenge remains in how to use such results predictively for local and instantaneous consumption speed for small segments of turbulent flames where their unsteady stretch history is not periodic. This paper uses a frequency response analysis as a characterization tool to simplify the complex non-linear behaviour of premixed methane air flames for equivalence ratios from 1.0 down to 0.7, and frequencies from quasi-steady up to 2000 Hz using flame transfer functions. Various linear and nonlinear models were used to identify appropriate flame transfer functions for low and higher frequency regimes, as well as extend the predictive capabilities of these models. Linear models were only able to accurately predict the flame behaviour below a threshold of when the fluid and chemistry time scales are the same order of magnitude. Other proposed transfer functions were tested against arbitrary multi-frequency stretch inputs and were shown to be effective over the full range of frequencies.


2007 ◽  
Vol 31 (1) ◽  
pp. 53-66 ◽  
Author(s):  
Bart J. G. Sette ◽  
Erwin Theuns ◽  
Bart Merci ◽  
Paul Vandevelde

Author(s):  
Kokichi Sawada ◽  
Shinji Nakao ◽  
Tsuneaki Ishima ◽  
Tomio Obokata ◽  
Katsuyoshi Kawachi ◽  
...  

The structure, droplet characteristics and instantaneous fuel injection rate of two stage injection spray designed for direct injection gasoline engine were analyzed experimentally. A particle image velocimetry (PIV) to evaluate the instantaneous two-dimensional velocity field, a phase Doppler anemometer (PDA) and an instantaneous fuel flow rate meter based on a laser Doppler anemometer (LDA flow rate meter) were applied for the measurements. A swirl nozzle injector was used and injection conditions were 25 Hz of spray frequency, 2 ms and 1ms of the first and the second injection durations and 2.4, 3.3 and 9.1 ms of valve opening intervals. The initial jet of the second stage injection can overtook the main spray body of the first stage injection under the valve opening interval of 2.4 and 3.3 ms. The LDA flow rate meter made the injection rate measurement with sufficient accuracy in the two stage injection and showed the unstable second injection due to remaining pressure oscillation in the injection pipe. Both time averaged and time resolved PDA results were compared in the intermittent spray. The interaction between the first and the second sprays was also demonstrated in vector map obtained by the PIV measurement.


Sign in / Sign up

Export Citation Format

Share Document