Aerodynamic Design and Numerical Investigation on Overall Performance of a Microradial Turbine With Millimeter-Scale

Author(s):  
Lei Fu ◽  
Yan Shi ◽  
Qinghua Deng ◽  
Zhenping Feng

For millimeter-scale microturbines, the principal challenge is to achieve a design scheme to meet the aerothermodynamics, geometry restriction, structural strength, and component functionality requirements while in consideration of the applicable materials, realizable manufacturing, and installation technology. This paper mainly presents numerical investigations on the aerothermodynamic design, geometrical design, and overall performance prediction of a millimeter-scale radial turbine with a rotor diameter of 10 mm. Four kinds of turbine rotor profiles were designed, and they were compared with one another in order to select the suitable profile for the microradial turbine. The leaving velocity loss in microgas turbines was found to be a large source of inefficiency. The approach of refining the geometric structure of rotor blades and the profile of diffuser were adopted to reduce the exit Mach number, thus improving the total-static efficiency. Different from general gas turbines, microgas turbines are operated in low Reynolds numbers (104–105), which has significant effect on flow separation, heat transfer, and laminar to turbulent flow transition. Based on the selected rotor profile, several microgas turbine configurations with different tip clearances of 0.1 mm, 0.2 mm, and 0.3 mm, two different isothermal wall conditions, and two laminar-turbulent transition models were investigated to understand the particular influences of low Reynolds numbers. These influences on the overall performance of the microgas turbine were analyzed in detail. The results indicate that these configurations should be included and emphasized during the design process of the millimeter-scale microradial turbines.

Author(s):  
Lei Fu ◽  
Yan Shi ◽  
Qinghua Deng ◽  
Zhenping Feng

For millimeter-scale microturbines, the principal challenge is to achieve a design scheme to meet the aerothermodynamics, geometry restriction, structural strength and component functionality requirements while in consideration of the applicable materials, realizable manufacturing and installation technology. This paper mainly presents numerical investigations on the aerothermodynamic design, geometrical design and overall performance prediction of a millimeter-scale radial turbine with rotor diameter of 10mm. Four kinds of turbine rotor profiles were designed, and they were compared with one another in order to select the suitable profile for the micro radial turbine. The leaving velocity loss in micro gas turbines was found to be a large source of inefficiency. The approach of refining the geometric structure of rotor blades and the profile of diffuser were adopted to reduce the exit Mach number thus improving the total-static efficiency. Different from general gas turbines, micro gas turbines are operated in low Reynolds numbers, 104∼105, which has significant effect on flow separation, heat transfer and laminar to turbulent flow transition. Based on the selected rotor profile, several micro gas turbine configurations with different tip clearances of 0.1mm, 0.2mm and 0.3mm, respectively; two different isothermal wall conditions; and two laminar-turbulent transition models were investigated to understand the particular influence of low Reynolds number. These influences on the overall performance of the micro gas turbine were analyzed in details. The results indicate that these configurations should be included and emphasized during the design process of the millimeter-scale micro radial turbines.


1964 ◽  
Vol 86 (3) ◽  
pp. 257-295 ◽  
Author(s):  
J. Neustein

The performance of a single-stage, axial-flow turbomachine was studied experimentally at low Reynolds numbers. The study was made with a turbomachine modeled from a large jet-engine type of axial-flow compressor. Low Reynolds numbers were obtained by using a mixture of glycerine and water as the working fluid. The overall performance was determined over a range of Reynolds numbers RT (based on rotor-tip speed and rotor chord) from 2000 to 150,000. The flow rate at each Reynolds number was varied from near shutoff to the maximum permitted by the turbomachine-tunnel systems. Blade-row characteristics were studied by means of quantitative flow surveys before and after each blade row, and by means of extensive flow-visualization experiments within each blade row. The investigation established that sudden or critical changes in performance do not occur in the type of machine tested, between RT of 150,000 and 20,000. Below 20,000 the performance deteriorated more rapidly. A relatively sharp change in performance occurred between RT of 20,000 and 10,000. The results clarified many of the viscous flow details in each blade row which are associated with the deterioration of performance. These effects were very pronounced at RT of 4000 and below. Consequently, a considerable part of the paper is concerned with results obtained at these lower Reynolds numbers. From the point of view of a designer, information is presented in regard to overall performance, guide-vane turning, and guide-vane and stator total-pressure losses, all as functions of Reynolds number. These results are expected to be indicative of performance in turbomachines similar to the one tested here. Other details are concerned with problems such as wall boundary layers, flow reversal at low flow coefficients, lip-clearance flow, flow patterns near shutoff, and flow comparisons in stators with rotating and stationary hubs.


Author(s):  
Takayuki Matsunuma ◽  
Hiroyuki Abe ◽  
Yasukata Tsutsui

The aerodynamic characteristics of turbine cascades are thought to be relatively satisfactory due to the favorable pressure of the accelerating flow. But within the low Reynolds number region of 6×104 where the 300kW ceramic gas turbines which are being developed under the New Sunshine project of Japan operate, the characteristics such as boundary layer separation, reattachment and secondary flow which lead to prominent power losses can not be easily predicted. In this research, experiments have been conducted to evaluate the performance of an annular turbine stator cascade, especially focused on the influence of inlet turbulence intensity at low Reynolds numbers. The Reynolds number, based on inlet condition, was varied from 2×104 to 12×104. The turbulence intensity was changed between 0.5% and 8.9% by setting turbulence generation sheets. The wake of the cascade was measured using a 5-hole pressure probe and a single element hot-wire anemometry. The Reynolds number was a determinative important parameter, while the turbulence intensity was found to have an insignificant effect on the overall total pressure loss of annular turbine stator at low Reynolds numbers. However, the increase in separation zone on suction surface and the decrease of passage vortices near the endwalls were observed locally with the increase in the inlet turbulence intensity. Instantaneous velocity signals proved the transformation of the flow structure in separation zone. The increase in profile loss (separation) and the decrease in net secondary loss (passage vonices) offset each other. Therefore, the net overall loss remains almost constant.


Author(s):  
Takayuki Matsunuma ◽  
Hiroyuki Abe ◽  
Yasukata Tsutsui ◽  
Koji Murata

The aerodynamic characteristics of turbine cascades are thought to be relatively satisfactory due to the favorable pressure gradient of the accelerating flow. But within the low Reynolds number region of approximately 6×104 where the 300kW ceramic gas turbines which are being developed under the New Sunshine Project of Japan operate, the characteristics such as boundary layer separation, reattachment and secondary flow which lead to prominent power losses can not be easily predicted. In this research, experiments have been conducted to evaluate the performance of an annular turbine stator cascade. Wakes of the cascade were measured using a single hot wire and five hole pressure tube, for a range of blade chord Reynolds numbers based on the inlet condition from 2×104 to 12×104. Flow visualizations on the suction surface of the blade were carried out using oil film method. At low Reynolds numbers, the flow structure in the annular cascade was quite complex and three-dimensional. The separation line on the suction surface moved upstream due to the decrease of Reynolds number. In addition, the growth of secondary flows, i.e., passage vortices and leakage vortex, was extremely under the influence of Reynolds number.


2002 ◽  
Vol 45 (3) ◽  
pp. 457-464 ◽  
Author(s):  
Takayuki MATSUNUMA ◽  
Hiroyuki ABE ◽  
Yasukata TSUTSUI

2020 ◽  
Vol 21 (6) ◽  
pp. 621
Author(s):  
Veerapathiran Thangaraj Gopinathan ◽  
John Bruce Ralphin Rose ◽  
Mohanram Surya

Aerodynamic efficiency of an airplane wing can be improved either by increasing its lift generation tendency or by reducing the drag. Recently, Bio-inspired designs have been received greater attention for the geometric modifications of airplane wings. One of the bio-inspired designs contains sinusoidal Humpback Whale (HW) tubercles, i.e., protuberances exist at the wing leading edge (LE). The tubercles have excellent flow control characteristics at low Reynolds numbers. The present work describes about the effect of tubercles on swept back wing performance at various Angle of Attack (AoA). NACA 0015 and NACA 4415 airfoils are used for swept back wing design with sweep angle about 30°. The modified wings (HUMP 0015 A, HUMP 0015 B, HUMP 4415 A, HUMP 4415 B) are designed with two amplitude to wavelength ratios (η) of 0.1 & 0.24 for the performance analysis. It is a novel effort to analyze the tubercle vortices along the span that induce additional flow energy especially, behind the tubercles peak and trough region. Subsequently, Co-efficient of Lift (CL), Co-efficient of Drag (CD) and boundary layer pressure gradients also predicted for modified and baseline (smooth LE) models in the pre & post-stall regimes. It was observed that the tubercles increase the performance of swept back wings by the enhanced CL/CD ratio in the pre-stall AoA region. Interestingly, the flow separation region behind the centerline of tubercles and formation of Laminar Separation Bubbles (LSB) were asymmetric because of the sweep.


2010 ◽  
Vol 1 (1-2) ◽  
pp. 15-20 ◽  
Author(s):  
B. Bolló

Abstract The two-dimensional flow around a stationary heated circular cylinder at low Reynolds numbers of 50 < Re < 210 is investigated numerically using the FLUENT commercial software package. The dimensionless vortex shedding frequency (St) reduces with increasing temperature at a given Reynolds number. The effective temperature concept was used and St-Re data were successfully transformed to the St-Reeff curve. Comparisons include root-mean-square values of the lift coefficient and Nusselt number. The results agree well with available data in the literature.


Sign in / Sign up

Export Citation Format

Share Document