Gas-Gun Experiments Determine Forces on Penetrators Into Geological Targets

1984 ◽  
Vol 51 (3) ◽  
pp. 602-607 ◽  
Author(s):  
M. J. Forrestal ◽  
L. M. Lee ◽  
B. D. Jenrette ◽  
R. E. Setchell

We developed a convenient laboratory procedure to determine forces on projectiles penetrating geological targets. Gas guns were used to accelerate foundry core targets (a simulated soft sandstone) to steady velocities, and the targets subsequently impacted 20.6-mm-dia penetrators instrumented with piezoelectric accelerometers. Rigid-body acceleration data were recorded for one ogival and two conical nose shapes for impact velocities between 0.2-1.2 km/s.

Author(s):  
Arun Tom Mathew ◽  
Tirumala Rao Koka ◽  
Murali Krishnan Payangapadan

Single stage gas guns are typically used for accelerating the projectiles in bird and hail impact tests of aerospace components and engines. In this paper an alternative design for single stage gas gun is studied, which is derived from V3 canon. Three dimensional numerical simulations is carried out for the optimal secondary connection angle with the main barrel. A one dimensional code is developed for the V3 canon based design. Design of experiments conducted to find the response surface for the optimal location of the secondary connection, volume and pressure of the secondary tank.


2020 ◽  
Vol 10 (12) ◽  
pp. 4383
Author(s):  
Weiqi Tang ◽  
Qiu Wang ◽  
Bingchen Wei ◽  
Jiwei Li ◽  
Jinping Li ◽  
...  

A two-stage light gas gun driven by gaseous detonation was newly constructed, which can make up for the disadvantages of the insufficient driving capability of high-pressure gas and the constraints of gunpowder. The performance of the gas gun was investigated through experiments and a quasi-one-dimensional modeling of it was also developed and described in detail. The model accounts for the friction and heat transfer to the tube wall for gases by adding a source term. An improved model has been established to consider the inertial loads in the piston or projectile and model the friction force with the tube wall. Besides, the effects of pump tube pressure on the performance of the gas gun are also investigated numerically. Simulations of the pressure histories in the pump tube and the piston and projectile velocities were conducted. A good agreement was observed between the computational predictions and experimental results. The results showed that the friction between the piston and wall had only small influence on the piston velocity. The proposed numerical approach is suitable for the development of two-stage light gas guns and tests of the operating conditions.


Author(s):  
Heather L. Lai ◽  
Susan Ko

Abstract This project focuses on the development and characterization of a high speed video motion capture system for the measurement of planar, rigid body motions. The ability to collect information related to the accelerations, velocities and positions of points on a rigid body as it moves in planar space is very important in the fields of science and engineering. Traditional techniques, including the use of accelerometers, extensors and lasers, either rely on contact between the rigid body and the sensor or only measure out of plane motion. In this project, an inexpensive monochromatic high speed camera was used in conjunction with markers adhered to the objects under investigation to measure the planar displacement of a point on a moving object. The high speed camera is able to capture video at a rate of up to 20,000 frames per second, however, at this speed the field of view is very small. For a larger field of view, the frames per second is diminished to close to 3,000 frames per second. The goal of this project was to develop the hardware parameters and software necessary to collect and process 2D motion data at different frequencies and then evaluate the efficacy of video motion capture through comparison with simultaneously captured acceleration data. The efficacy was evaluated over a range of accelerations using variable frequency oscillations. The video footage was processed, frame by frame in order to extract x and y position for the center of the marker. Extraction of the position data was completed using the MATLAB computer vision toolbox, which provides tools for identifying the x and y locations of corners, circle centers and other defining features. The project began by identifying size, shape, color and material of markers for effective data collection using the motion capture system. Additionally, camera settings, field of view, capture rate, lighting and mounting conditions were evaluated to determine what conditions would result in the most accurate position sensing. In order to validate the measurements from the motion capture system, position data were correlated with accelerations measured from a traditional accelerometer located on the object under test. In order for the position data collected through the high speed video capture to be compared with the acceleration data collected using measurement from accelerometers, numerical differentiation of the position signals gathered from the high speed footage was performed. The efficacy of different shape and size markers, along with other camera settings, will be demonstrated for specific oscillatory test profiles.


2006 ◽  
Vol 49 (2) ◽  
pp. 16-24 ◽  
Author(s):  
Mark Bounds ◽  
George White

The Army has many rigid-body dynamic models of various vehicle platforms. The adequacy of these rigid-body models has been questioned. In an effort to gain insight into the significance of flexibility in the development of dynamic vehicle models, operating deflection shape (ODS) techniques were applied to acceleration data gathered from the body of a wheeled military vehicle. The data were analyzed in an effort to determine a specific frequency range over which the assumption of rigidity would be valid. For the particular platform examined in this study, the assumption of rigidity would apply up to approximately 14 Hz. Future efforts include using operational modal analysis (OMA) to further examine the problem.


Author(s):  
Philippe Cardou ◽  
Jorge Angeles

Among other applications, accelerometer arrays have been used extensively in crashworthiness to measure the acceleration field of the head of a dummy subjected to impact. As it turns out, most accelerometer arrays proposed in the literature were analyzed on a case-by-case basis, often not knowing what components of the rigid-body acceleration field the sensor allows to estimate. We introduce a general model of accelerometer behavior, which encompasses the features of all acclerometer arrays proposed in the literature, with the purpose of determining their scope and limitations. The model proposed leads to a classification of accelerometer arrays into three types: point-determined; tangentially determined; and radially determined. The conditions that define each type are established, then applied to the three types drawn from the literature. The model proposed lends itself to a symbolic manipulation, which can be readily automated, with the purpose of providing an evaluation tool for any acceleration array, which should be invaluable at the development stage, especially when a rich set of variants is proposed.


2000 ◽  
Vol 123 (3) ◽  
pp. 552-554 ◽  
Author(s):  
Bruno Zappa ◽  
Giovanni Legnani ◽  
Anton J. van den Bogert ◽  
Riccardo Adamini

This paper identifies the minimum number of accelerometers necessary to measure rigid body acceleration. Notwithstanding that only 9 scalar unknowns must be identified, 12 devices compose a minimum set of transducers. This redundancy is necessary to avoid singularities in the equations. Conditions for the sensor placement are given. It is also shown that when the determination of the angular velocity is not required, a reduced set of 9 sensors can be adopted.


Author(s):  
Rachel C. Huber ◽  
Erik B. Watkins ◽  
Dana M. Dattelbaum ◽  
Richard L. Gustavsen

Abstract Understanding the kinetics of phase transitions, including decomposition from reactants to products under extreme condition events is challenging. Capturing these processes require: 1) diagnostics that probe on the timescales and at energies capable of interacting with the dynamically evolving products, penetrating the opaqueness of the changing system; and 2) detectors sensitive enough to observe these events. Synchrotrons and free electron lasers provide ke-V-energy x-ray beams capable of penetrating the optical-opaqueness of the temporally evolving products. At the Dynamic Compression Sector at the Advanced Photon Source, the x-ray beam is coupled to single and two-stage gas guns capable of producing planar shocks at a range of projectile velocities while capturing in situ x-ray diffraction/scattering of the evolving material under dynamic compression. In this work, we demonstrate the utility of this approach in measuring the evolution of crystalline domains in shocked high-density polyethylene to P = 7.45 GPa, and have observed the compression and orientation of the polymer chains in real time.


Sign in / Sign up

Export Citation Format

Share Document