Development of a Low Cost High-Speed Video Motion Capture System for Planar Motion

Author(s):  
Heather L. Lai ◽  
Susan Ko

Abstract This project focuses on the development and characterization of a high speed video motion capture system for the measurement of planar, rigid body motions. The ability to collect information related to the accelerations, velocities and positions of points on a rigid body as it moves in planar space is very important in the fields of science and engineering. Traditional techniques, including the use of accelerometers, extensors and lasers, either rely on contact between the rigid body and the sensor or only measure out of plane motion. In this project, an inexpensive monochromatic high speed camera was used in conjunction with markers adhered to the objects under investigation to measure the planar displacement of a point on a moving object. The high speed camera is able to capture video at a rate of up to 20,000 frames per second, however, at this speed the field of view is very small. For a larger field of view, the frames per second is diminished to close to 3,000 frames per second. The goal of this project was to develop the hardware parameters and software necessary to collect and process 2D motion data at different frequencies and then evaluate the efficacy of video motion capture through comparison with simultaneously captured acceleration data. The efficacy was evaluated over a range of accelerations using variable frequency oscillations. The video footage was processed, frame by frame in order to extract x and y position for the center of the marker. Extraction of the position data was completed using the MATLAB computer vision toolbox, which provides tools for identifying the x and y locations of corners, circle centers and other defining features. The project began by identifying size, shape, color and material of markers for effective data collection using the motion capture system. Additionally, camera settings, field of view, capture rate, lighting and mounting conditions were evaluated to determine what conditions would result in the most accurate position sensing. In order to validate the measurements from the motion capture system, position data were correlated with accelerations measured from a traditional accelerometer located on the object under test. In order for the position data collected through the high speed video capture to be compared with the acceleration data collected using measurement from accelerometers, numerical differentiation of the position signals gathered from the high speed footage was performed. The efficacy of different shape and size markers, along with other camera settings, will be demonstrated for specific oscillatory test profiles.

2013 ◽  
Vol 25 (3) ◽  
pp. 458-465 ◽  
Author(s):  
Sagar N. Purkayastha ◽  
◽  
Michael D. Byrne ◽  
Marcia K. O’Malley

Gaming controllers are attractive devices for research due to their onboard sensing capabilities and low cost. However, a proper quantitative analysis regarding their suitability for motion capture has yet to be fully reported. In this paper, a detailed analysis of the accelerometers of the Nintendo Wiimote is presented. The gravity-compensated acceleration data from the accelerometers of theWiimote were plotted, compared and correlated with computed acceleration data derived from a six-camera motion capture system. The results show high correlation and low mean absolute error between the gravity-compensated data from the accelerometers of the controllers and computed acceleration from position data of the motion capture system. From the results obtained, it can be inferred that the Wiimote is well suited for motion capture applications where post-processing of data is practical.


2020 ◽  
Vol 14 ◽  
Author(s):  
Grady W. Jensen ◽  
Patrick van der Smagt ◽  
Egon Heiss ◽  
Hans Straka ◽  
Tobias Kohl

2011 ◽  
Vol 19 ◽  
pp. 214-219 ◽  
Author(s):  
Yi-Hong Lin ◽  
Wen-Hong Wu ◽  
Wei-Zhe Huang

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Buntaro Zempo ◽  
Natsuko Tanaka ◽  
Eriko Daikoku ◽  
Fumihito Ono

AbstractThe mating behavior of teleost fish consists of a sequence of stereotyped actions. By observing mating of zebrafish under high-speed video, we analyzed and characterized a behavioral cascade leading to successful fertilization. When paired, a male zebrafish engages the female by oscillating his body in high frequency (quivering). In response, the female pauses swimming and bends her body (freezing). Subsequently, the male contorts his trunk to enfold the female’s trunk. This behavior is known as wrap around. Here, we found that wrap around behavior consists of two previously unidentified components. After both sexes contort their trunks, the male adjusts until his trunk compresses the female’s dorsal fin (hooking). After hooking, the male trunk slides away from the female’s dorsal fin, simultaneously sliding his pectoral fin across the female’s gravid belly, stimulating egg release (squeezing/spawning). Orchestrated coordination of spawning presumably increases fertilization success. Surgical removal of the female dorsal fin inhibited hooking and the transition to squeezing. In a neuromuscular mutant where males lack quivering, female freezing and subsequent courtship behaviors were absent. We thus identified traits of zebrafish mating behavior and clarified their roles in successful mating.


2008 ◽  
Vol 5 (3) ◽  
pp. 157-164 ◽  
Author(s):  
T. Landgraf ◽  
H. Moballegh ◽  
R. Rojas

We have designed a robotic honeybee to mimic the bee dance communication system. To achieve this goal, a tracking system has been developed to extract real bee dance trajectories recorded with high-speed video cameras. The results have been analysed to find the essential properties required for the prototype robot. Putative signals in the dance communication have been identified from the literature. Several prototypes were built with successive addition of more features or improvement of existing components. Prototypes were tested in a populated beehive results were documented using high-speed camera recordings. A substantial innovation is a visual feedback system that helps the robot to minimise collisions with other bees.


2014 ◽  
Author(s):  
Colin Donihue ◽  
Ben Kazez

Locomotion is an important characteristic of many animals’ natural history. With the increasing availability of high-speed video cameras, videography is a powerful tool for analyzing fast or subtle motions with unprecedented resolution. However, the programs currently available for analyzing these videos are either dauntingly time intensive or prohibitively expensive. We have developed a free, open-source video analysis program, SAVRA, that enables the quick capture of scaled position data. Here we demonstrate its use with an analysis of several videos of the Aegean wall lizard (Podarcis erhardii). We hope making this program freely available will facilitate the analysis of video data across taxa, not just in laboratory settings but also in natural contexts.


Author(s):  
Satoru Okamoto ◽  
Tetsuya Hirotomi ◽  
Keigo Aoki ◽  
Yasutomo Hosomi

Walkers are tools that are used to improve self-reliance when walking. In this study, the unstable motions of gait in subjects who use walkers were analyzed using tri-axial accelerometers and a motion capture system. Several markers were placed on the subjects’ backs and legs, and two high-speed video cameras were employed to record the motion of these markers. The subjects were asked to walk around a test course at a comfortable speed. The activities performed on the test course consisted of standing, normal walking, fast walking, walking over a barrier, and falling down. The authors’ results determined the characteristic rules of gait motion with walker use. They found that acceleration sensors are convenient for extracting characteristics from the gait motions. They believe that the methods employed with the acceleration sensors are suitable for the discovery of the average gait motions of elderly patients living in nursing homes and can be used to evaluate walking motion before and after rehabilitation.


Author(s):  
V. A. Knyaz

Wide variety of applications (from industrial to entertainment) has a need for reliable and accurate 3D information about motion of an object and its parts. Very often the process of movement is rather fast as in cases of vehicle movement, sport biomechanics, animation of cartoon characters. Motion capture systems based on different physical principles are used for these purposes. The great potential for obtaining high accuracy and high degree of automation has vision-based system due to progress in image processing and analysis. Scalable inexpensive motion capture system is developed as a convenient and flexible tool for solving various tasks requiring 3D motion analysis. It is based on photogrammetric techniques of 3D measurements and provides high speed image acquisition, high accuracy of 3D measurements and highly automated processing of captured data. Depending on the application the system can be easily modified for different working areas from 100 mm to 10 m. The developed motion capture system uses from 2 to 4 technical vision cameras for video sequences of object motion acquisition. All cameras work in synchronization mode at frame rate up to 100 frames per second under the control of personal computer providing the possibility for accurate calculation of 3D coordinates of interest points. The system was used for a set of different applications fields and demonstrated high accuracy and high level of automation.


Author(s):  
Amol Kulkarni ◽  
Amey Vidvans ◽  
Mustafa Rifat ◽  
Gregory Bicknell ◽  
Xi Gong ◽  
...  

The present work delineates a novel and scalable approach to characterization of defects in additively manufactured components. The approach is based on digital image correlation and involves characterization of surface speeds during rigid body rotation of the workpiece, followed by normalization with respect to rotation speed. Towards this, two different imaging sources were tested, viz. smartphone camera and sophisticated high-resolution/high-speed camera. The proposed approach successfully delineated horizontal and vertical notch defects in a simple FDM fabricated component. Accuracy of this approach was tested with concomitant laser based scanning. Some limitations of this approach were discussed.


Sign in / Sign up

Export Citation Format

Share Document