On the Flow of a Non-Newtonian Liquid Induced by Intestine-Like Contractions

1989 ◽  
Vol 111 (1) ◽  
pp. 1-8 ◽  
Author(s):  
N. Phan-Thien ◽  
H. T. Low

This paper considers the flow of an inelastic liquid which is generated by contractions like those of the intestine. Unlike regular peristaltic motion, these contractions occur locally over a finite length and have a finite amplitude. We adopt a contraction model due to Macagno and Christensen and repeat their analysis for an inelastic liquid. Our analysis, which is based on a Boundary Element Method, indicates that the net flow rate depends very weakly on the power-law index. The pumping action is therefore similar to that of a positive displacement pump.

2019 ◽  
Vol 877 ◽  
pp. 561-581 ◽  
Author(s):  
Moshe Favelukis

In this theoretical report we explore the deformation and stability of a power-law non-Newtonian slender drop embedded in a Newtonian liquid undergoing a nonlinear extensional creeping flow. The dimensionless parameters describing this problem are: the capillary number $(Ca\gg 1)$, the viscosity ratio $(\unicode[STIX]{x1D706}\ll 1)$, the power-law index $(n)$ and the nonlinear intensity of the flow $(|E|\ll 1)$. Asymptotic analytical solutions were obtained near the centre and close to the end of the drop suggesting that only Newtonian and shear thinning drops $(n\leqslant 1)$ with pointed ends are possible. We described the shape of the drop as a series expansion about the centre of the drop, and performed a stability analysis in order to distinguish between stable and unstable stationary states and to establish the breakup point. Our findings suggest: (i) shear thinning drops are less elongated than Newtonian drops, (ii) as non-Newtonian effects increase or as $n$ decreases, breakup becomes more difficult, and (iii) as the flow becomes more nonlinear, breakup is facilitated.


2012 ◽  
Vol 2012 ◽  
pp. 1-31 ◽  
Author(s):  
B. Uma

Dynamics and stability of a nonisothermal power-law liquid film down an inclined plane is considered in the presence of interfacial shear. Linear stability characteristics of the power-law liquid film using normal mode approach reveal that isothermal and evaporating films are unstable for any value of power-law index while there exists a critical value of power-law index for the case of condensate film above which condensate film ow system is always stable. This critical value of power-law index increases with the increase in shear stress at the interface. Weakly nonlinear stability analysis using method of multiple scales divulges the existence of zones due to supercritical stability and subcritical instability. The nonlinear evolution equation is solved numerically in a periodic domain. The results reveal that (1) for an isothermal dilatant (pseudoplastic) liquids, the maximum wave amplitude is always smaller (larger) than that for a Newtonian liquid and the amplitude of permanent wave increases with the increase in interfacial shear; (2) condensation of pseudoplastic film happens for the earlier instant of time when the phase change parameter increases and the effect of interfacial shear makes the film more corrugated; (3) dilatant (pseudoplastic) evaporating liquid film attains rupture faster (slower) than that of Newtonian liquid film, and the interfacial shear does not influence the time at which rupture occurs.


2012 ◽  
Vol 134 (9) ◽  
Author(s):  
Z. Alloui ◽  
N. Ben Khelifa ◽  
H. Beji ◽  
P. Vasseur

This paper investigates the onset of motion, and the subsequent finite-amplitude convection, in a shallow porous cavity filled with a non-Newtonian fluid. A power-law model is used to characterize the non-Newtonian fluid behavior of the saturating fluid. Constant fluxes of heat are imposed on the horizontal walls of the layer. The governing parameters of the problem under study are the Rayleigh number R, the power-law index n, and the aspect ratio of the cavity A. An analytical solution, valid for shallow enclosures (A ≫ 1), is derived on the basis of the parallel flow approximation. In the range of the governing parameters considered in this study, a good agreement is found between the analytical predictions and the numerical results obtained by solving the full governing equations. For dilatant fluids (n > 1), it is found that the onset of motion is linearly unstable, i.e., always occurs provided that the supercritical Rayleigh number RCsup≥0. For pseudoplastic fluids (n < 1), the supercritical Rayleigh number for the onset of motion is RCsup=∞. However, it is demonstrated, on the basis of the nonlinear parallel flow theory, that the onset of motion occurs above a subcritical Rayleigh number RCsub which depends upon the power-law index n. For finite-amplitude convection, the heat and flow characteristics predicted by the analytical model are found to agree well with a numerical study of the full governing equations.


2017 ◽  
Vol 831 ◽  
pp. 228-251 ◽  
Author(s):  
Kenta Ishimoto ◽  
Eamonn A. Gaffney

The consideration of viscoelasticity within fluid dynamical boundary element methods has traditionally required meshing over the whole flow domain. In turn, a major advantage of the boundary element method is lost, namely the need to consider only surface boundary integrals. Here, using a generalised reciprocal relation and viscoelastic force singularities, a boundary element method is developed for linear viscoelastic flows. We proceed to explore finite-deformation microswimming in a linear Maxwell fluid. We firstly deduce a finite-amplitude generalisation of a previously reported result that the flow field is unchanged between a Newtonian and linear Maxwell fluid for prescribed small-amplitude deformations. Hence Purcell’s theorem holds for a linear Maxwell fluid. We proceed to consider deformation swimming in a linear Maxwell fluid given an external forcing. Boundary scattering trajectories for an exemplar squirmer approaching a surface are observed to exhibit a weak dependence on the Deborah number, while the trajectories of a sperm and monotrichous bacterium near a surface are predicted to be essentially unaffected at moderate Deborah number. In turn, the latter supports the common simplification of using Newtonian Stokes flows for studying flagellate swimming in linear Maxwell media. In addition, the motion of a magnetic helix under the influence of an external magnetic field is considered, and highlights that linear viscoelasticity can significantly impact the propagation of the helix, in turn demonstrating that even linear rheology is important to consider for forced swimmers. Finally, the presented framework requires minimalistic adjustments to Newtonian boundary element codes, enabling rapid implementation, and is more generally applicable, for instance to studies of particle interactions in active linear rheology on the microscale.


1995 ◽  
Vol 5 (6) ◽  
pp. 621-638 ◽  
Author(s):  
J. H. Hilbing ◽  
Stephen D. Heister ◽  
C. A. Spangler

1993 ◽  
Vol 21 (2) ◽  
pp. 66-90 ◽  
Author(s):  
Y. Nakajima ◽  
Y. Inoue ◽  
H. Ogawa

Abstract Road traffic noise needs to be reduced, because traffic volume is increasing every year. The noise generated from a tire is becoming one of the dominant sources in the total traffic noise because the engine noise is constantly being reduced by the vehicle manufacturers. Although the acoustic intensity measurement technology has been enhanced by the recent developments in digital measurement techniques, repetitive measurements are necessary to find effective ways for noise control. Hence, a simulation method to predict generated noise is required to replace the time-consuming experiments. The boundary element method (BEM) is applied to predict the acoustic radiation caused by the vibration of a tire sidewall and a tire noise prediction system is developed. The BEM requires the geometry and the modal characteristics of a tire which are provided by an experiment or the finite element method (FEM). Since the finite element procedure is applied to the prediction of modal characteristics in a tire noise prediction system, the acoustic pressure can be predicted without any measurements. Furthermore, the acoustic contribution analysis obtained from the post-processing of the predicted results is very helpful to know where and how the design change affects the acoustic radiation. The predictability of this system is verified by measurements and the acoustic contribution analysis is applied to tire noise control.


Sign in / Sign up

Export Citation Format

Share Document