Effect of Fiber Anisotropy on Thermal Stresses in Fibrous Composites

1986 ◽  
Vol 53 (4) ◽  
pp. 751-756 ◽  
Author(s):  
W. B. Avery ◽  
C. T. Herakovich

An elasticity solution is utilized to analyze an orthotropic fiber in an isotropic matrix under uniform thermal load. The analysis reveals that stress distributions in the fiber are singular in the radial coordinate when the radial fiber stiffness (Crr) is greater than the hoop stiffness (Cθθ). Conversely, if Crr < Cθθ the maximum stress in the composite is finite and occurs at the fiber-matrix interface. In both cases the stress distributions are radically different than those predicted assuming the fiber to be transversely isotropic (Crr=Cθθ). It is also shown that fiber volume fraction greatly influences the stress distribution for transversely isotropic fibers, but has little effect on the distribution if the fibers are transversely orthotropic.

Author(s):  
Keith R. Hurdelbrink ◽  
Gorkem E. Guloglu ◽  
Jacob P. Anderson ◽  
Landon R. Grace ◽  
Zahed Siddique ◽  
...  

The focus of this paper was to investigate the effects of microvoid content in quartz/BMI laminates on both short and long-term moisture absorption dynamics. The moisture absorption characteristics for the laminates were experimentally obtained by water immersion tests at 25°C of three-ply quartz/BMI samples that contain voids, ranging from 8.6% to 13.7% by volume. The void levels were obtained by conditioning the prepreg at different moisture levels for 48 hours in an environmental chamber before curing in a hot press. The curing process was carried out at 69 kPa, which leads to a more uniform fiber volume fraction for the laminates. Having a constant fiber volume fraction ensures the same amount of fiber-matrix interface present in all the test samples, therefore eliminating the effect of fiber-matrix interface as an experimental variable. It is shown that the presence of microvoids leads to an increased non-Fickian absorption behavior. Hence, the anomalous, non-Fickian absorption parameters are obtained by using a one-dimensional absorption model that accounts for both bound and unbound free water within the laminate. It is shown that the microvoids act as storage sites for moisture which can be described by the one-dimensional, non-Fickian absorption model. Finally, possible relationships between the four absorption model parameters and the process-induced microvoid content are discussed.


1992 ◽  
Vol 62 (12) ◽  
pp. 749-765 ◽  
Author(s):  
Ning Pan

This article reports an attempt to develop a general constitutive theory governing the mechanical behavior of twisted short fiber structures, starting with a high twist case, so that the effect of fiber slippage during yarn extension can be ignored. A differential equation describing the stress transfer mechanism in a staple yarn is proposed by which both the distributions of fiber tension and lateral pressure along a fiber length during yarn extension are derived. Factors such as fiber dimensions and properties and the effect of the discontinuity of fiber length within the structure are all included in the theory. With certain assumptions, the relationship between the mean fiber-volume fraction and the twist level of the yarn is also established. A quantity called the cohesion factor is defined based on yarn twist and fiber properties as well as on the form of fiber arrangement in the yarn to reflect the effectiveness of fiber gripping by the yarn. By considering the yarn structure as transversely isotropic with a variable fiber-volume fraction depending on the level of twist, the tensile and shear moduli as well as the Poisson's ratios of the structures are theoretically determined. All these predicted results have been verified according to the constitutive restraints of the continuum mechanics, and the final results are also illustrated schematically.


1989 ◽  
Vol 56 (3) ◽  
pp. 601-608 ◽  
Author(s):  
Yuan Ruo Wang ◽  
Tsu-Wei Chou

This paper studies the three-dimensional transient interlaminar thermal stresses in elastic, angle-ply laminated composites due to sudden changes in the thermal boundary conditions. The transient temperature field and transient interlaminar thermal stresses of the laminate are obtained by solving the heat conduction equation and by a zeroth-order perturbation analysis of the equilibrium equations, respectively. Numerical results for a four-layer angle-ply laminate have shown that the interlaminar normal stress near the free edge is significantly higher than that in the interior region and it increases rapidly with the fiber volume fraction.


2021 ◽  
pp. 002199832110047
Author(s):  
Mahmoud Mohamed ◽  
Siddhartha Brahma ◽  
Haibin Ning ◽  
Selvum Pillay

Fiber prestressing during matrix curing can significantly improve the mechanical properties of fiber-reinforced polymer composites. One primary reason behind this improvement is the generated compressive residual stress within the cured matrix, which impedes cracks initiation and propagation. However, the prestressing force might diminish progressively with time due to the creep of the compressed matrix and the relaxation of the tensioned fiber. As a result, the initial compressive residual stress and the acquired improvement in mechanical properties are prone to decline over time. Therefore, it is necessary to evaluate the mechanical properties of the prestressed composites as time proceeds. This study monitors the change in the tensile and flexural properties of unidirectional prestressed glass fiber reinforced epoxy composites over a period of 12 months after manufacturing. The composites were prepared using three different fiber volume fractions 25%, 30%, and 40%. The results of mechanical testing showed that the prestressed composites acquired an initial increase up to 29% in the tensile properties and up to 32% in the flexural properties compared to the non-prestressed counterparts. Throughout the 12 months of study, the initial increase in both tensile and flexural strength showed a progressive reduction. The loss ratio of the initial increase was observed to be inversely proportional to the fiber volume fraction. For the prestressed composites fabricated with 25%, 30%, and 40% fiber volume fraction, the initial increase in tensile and flexural strength dropped by 29%, 25%, and 17%, respectively and by 34%, 26%, and 21%, respectively at the end of the study. Approximately 50% of the total loss took place over the first month after the manufacture, while after the sixth month, the reduction in mechanical properties became insignificant. Tensile modulus started to show a very slight reduction after the fourth/sixth month, while the flexural modulus reduction was observed from the beginning. Although the prestressed composites displayed time-dependent losses, their long-term mechanical properties still outperformed the non-prestressed counterparts.


2019 ◽  
Vol 253 ◽  
pp. 02004
Author(s):  
Wael Alnahhal ◽  
Omar Aljidda

This study investigates the effect of using different volume fractions of basalt macro fibers (BMF) on the flexural behavior of concrete beams made with 100% recycled concrete aggregates (RCA) experimentally. A total of 4 reinforced concrete (RC) beam specimens were flexural tested until failure. The parameter investigated included the BMF volume fraction (0%, 0.5%, 1%, and 1.5%). The testing results of the specimens were compared to control beam specimen made with no added fibers. The experimental results showed that adding BMF improves the flexural capacity of the tested beams.


2012 ◽  
Vol 583 ◽  
pp. 150-153
Author(s):  
Qian Liu ◽  
Xiao Yuan Pei ◽  
Jia Lu Li

The modal properties of carbon fiber woven fabric (with fiber orientation of 45°/-45°) / epoxy resin composites with different fiber volume fraction were studied by using single input and single output free vibration of cantilever beam hammering modal analysis method. The effect of different fiber volume fraction on the modal parameters of laminated composites was analyzed. The experimental results show that with the fiber volume fraction increasing, the natural frequency of laminated composites becomes larger and damping ratio becomes smaller. The fiber volume fraction smaller, the peak value of natural frequency becomes lower and the attenuating degree of acceleration amplitude becomes faster.


Sign in / Sign up

Export Citation Format

Share Document