Beams on Variable Winkler Elastic Foundation

1986 ◽  
Vol 53 (4) ◽  
pp. 925-928 ◽  
Author(s):  
J. Clastornik ◽  
M. Eisenberger ◽  
D. Z. Yankelevsky ◽  
M. A. Adin

A stiffness approach is presented for computing the solution of beams on variable Winkler foundation. The solution may be achieved using only a small number of elements along the beam. Accuracy is dependent only on a preset user criterion. A numerical example demonstrates the efficiency and accuracy of the procedure.

2020 ◽  
Vol 2 (3) ◽  
pp. 229-242
Author(s):  
Bozo Vazic ◽  
Erkan Oterkus ◽  
Selda Oterkus

AbstractIn this study, a peridynamic model is presented for a Mindlin plate resting on a Winkler elastic foundation. In order to achieve static and quasi-static loading conditions, direct solution of the peridynamic equations is utilised by directly assigning inertia terms to zero rather than using widely adapted adaptive dynamic relaxation approach. The formulation is verified by comparing against a finite element solution for transverse loading condition without considering damage and comparing against a previous study for pure bending of a Mindlin plate with a central crack made of polymethyl methacrylate material having negligibly small elastic foundation stiffness. Finally, the fracture behaviour of a pre-cracked Mindlin plate rested on a Winkler foundation subjected to transverse loading representing a floating ice floe interacting with sloping structures. Similar fracture patterns observed in field observations were successfully captured by peridynamics.


2006 ◽  
Vol 129 (3) ◽  
pp. 380-385 ◽  
Author(s):  
Mohamed Gaith ◽  
Sinan Müftü

Transverse vibration of two axially moving beams connected by a Winkler elastic foundation is analyzed analytically. The two beams are tensioned, translating axially with a common constant velocity, simply supported at their ends, and of different materials and geometry. The natural frequencies and associated mode shapes are obtained. The natural frequencies of the system are composed of two infinite sets describing in-phase and out-of-phase vibrations. In case the beams are identical, these modes become synchronous and asynchronous, respectively. Divergence instability occurs at a critical velocity and a critical tension; and, divergence and flutter instabilities coexist at postcritical speeds, and divergence instability takes place precritical tensions. The effects of the mass, flexural rigidity, and axial tension ratios of the two beams are presented.


2019 ◽  
Vol 821 ◽  
pp. 459-464
Author(s):  
Qi Gao Hu ◽  
Xu Dong Hu ◽  
Zhi Qiang Shen ◽  
Liang Yun Tao ◽  
Ze Tan

The buried pipelines or vessels and other similar structures made of homogeneous or advanced composite materials are commonly used in civil engineering and biotechnology. The radial stability problem of these structures was widely studied using the cylindrical shell model over the past years. In this paper, the linear stability of cylindrical shells resting on Winkler elastic foundation under uniformly distributed external pressure was analyzed with semi-analytical quadrature element method (QEM). As for the longitudinal direction, the radial deflection of shell was approximated by the quadrature element formulation. While the analytic trigonometric function was adopted for description of radial deflection in circumferential direction. The Numerical results of critical buckling load were compared with the semi-analytical FEM. It is found that the semi-analytical QEM possesses higher computational efficiency and applicability than semi-analytical FEM. Then, the effects of the shell length, radius, and thickness on the critical buckling pressures are systematically investigated through the parametric studies.


Author(s):  
Timour M. A. Nusirat ◽  
M. N. Hamdan

This paper is concerned with analysis of dynamic behavior of an Euler-Bernoulli beam resting on an elastic foundation. The beam is assumed to be subjected to a uniformly distributed lateral static load, have an initial quarter-sine shape deflection. At one end, the beam is assumed to be restrained by a pin, while at the other end, the beam is assumed to be restrained by a torsional and a translational linear spring. The beam is modeled by a nonlinear partial differential equation where the nonlinearity enters the governing equation through the beam axial force. In the static case, because of a unique feature of governing equation, the analysis was carried out using the theory of linear differential equations, but takes into account the effect of actual deflection on the induced axial thrust. In the dynamic case, stability analysis of the beam is carried out by calculating the nonlinear frequencies of free vibration of the beam about its static equilibrium configuration. The assumed mode method is used to discretize and find an equivalent nonlinear initial value problem. Then the harmonic balance is used to obtain an approximate solution to the nonlinear oscillator described by the equivalent initial value problem. The analyses of results were carried out for a selected range of values of the system parameters: foundation elastic stiffness, lateral load, and maximum beam edge deflection. In the static case the results are presented as characteristic curves showing the variation of the beam static deflection and associated bending moment distribution with each of the above system parameters. In the dynamic case, the presented characteristic curves show the variation of the nonlinear natural frequency corresponding to the first and the second modes over a range of each of the above system parameters.


Author(s):  
S. Bosakov ◽  
O. Kozunova

This work presents a brief review of the literature on the theory and technique of computation of pivotally-connected structures on a linearly-elastic foundation. The authors refer to the works of B.G.Korenev, G.Ya.Popov, I.A.Simvulidi, R.V.Serebryany and A.G.Yuryev, in which investigations for calculating the pivotally-connected beams and slabs on an elastic foundation are performed using different approaches. From the analysis of the scientific and normative literature on the subject under consideration, a conclusion can be made that there is no common approach to solution of this problem, which would hold for any pivotally connected structures being in contact with any elastic foundation model under the action of an arbitrary external load. Besides, when designing the load carrying members of pavements of motor roads of various purposes in the Republic of Belarus, a number of branch-specific normative documents, where the pavements with the load carrying member and interconnection of members over the track length are considered separately in unconnected setting, is used. In this work, a universal approach for computation of pivotally-connected beams on an elastic foundation in the linear setting and taking into account the physical nonlinearity of the beam material is proposed. This approach is based on a mixed method of structural mechanics and implemented in different foundations taking into account the Zhemochkins relations for the functions of influences of an elastic medium. The following hypotheses and assumptions of the linear theory of elasticity and structural mechanics are taken into consideration: only normal stresses act at the contact of the beam with the foundation for beams the hypotheses of the flexural theory the pivot joints are cylindrical and the distribution of the contact stresses over the beam width is uniform. The physical nonlinearity of the beam material is taken into consideration through the variable rigidity of the Zhemochkins areas. Namely: after determining the forces in the Zhemochkins bonds at the contact of every beam with an elastic foundation as a result of the linear computation, the values of bending moments in each section of every beam are determined by the structural mechanics methods. From the calculated values of the moments, the tangential rigidity for each Zhemochkins area on the beam is determined using the formula of the moment-curvature dependence for the beam sections are determines as hyperbolic tangent. In the results of nonlinear computation, the stress-strain behaviour of the system of pivotally-connected beams on an elastic foundation is investigated as it was made earlier in the linear setting: distribution of contact stresses under the beams, internal forces in the beams and pivot joints as well as elastic foundation settlements. The proposed approach is implemented numerically with the use of the Mathematica 10.4 mathematical package. The computation example for three pivotally-connected beams on the Winkler foundation taking into account their physical nonlinearity.В работе приводится краткий обзор литературы по теории и методикам расчета шарнирно-соединенных конструкций на линейно-упругом основании. Авторы ссылаются на работы Б. Г. Коренева, Г. Я. Попова, И. А. Симвулиди, Р. В. Серебряного, А. Г. Юрьева, в которых различными подходами проведены исследования по расчету шарнирно-соединенных балок и плит на упругом основании. Из анализа научной и нормативной литературы по рассматриваемой тематике можно сделать вывод об отсутствии общего подхода к решению этой проблемы, справедливого для любых шарнирно-соединенных конструкций, контактирующих с любой моделью упругого основания под действием произвольной внешней нагрузки. Кроме того, при проектировании несущих элементов дорожных покрытий автомобильных дорог различного назначения в Республике Беларусь используется ряд отраслевых нормативных документов, в которых дорожная одежда с несущим элементом и соединение элементов между собой по длине трассы рассматриваются отдельно, в несвязной постановке. В данной работе предлагается универсальный подход для расчета шарнирно-соединенных балок на упругом основании в линейной постановке и с учетом физической нелинейности материала балок. Этот подход основан на смешанном методе строительной механики и реализуется в разных основаниях с учетом соотношений Жемочкина для функций влияний упругой среды. В расчет принимаются следующие гипотезы и допущения линейной теории упругости и строительной механики: на контакте балки с основанием действуют только нормальные напряжения, для балок справедливы гипотезы теории изгиба, шарниры между балками являются цилиндрическими, распределение контактных напряжений по ширине балок равномерное. Физическая нелинейность материала балок в предлагаемом расчете учитывается через переменную жесткость участков Жемочкина. А именно: после определения усилий в связях Жемочкина на контакте каждой балки с упругим основанием в результате линейного расчета, методами строительной механики определяются величины изгибающих моментов в каждом сечении каждой балки. По вычисленным значениям моментов определяется касательная жесткость для каждого участка Жемочкина на балках по формуле зависимости момент-кривизна для сечений балки в виде гиперболического тангенса. В результатах нелинейного расчета, как и ранее в линейной постановке, исследуется напряженно-деформированное состояние системы из шарнирно-соединенных балок на упругом основании: распределение контактных напряжений под балками, внутренние усилия в балках и шарнирных соединениях, а также осадки упругого основания. Численная реализация предлагаемого подхода выполнена с использованием математического пакета Mathematica 10.4. Приведен пример расчета для трех шарнирно-соединенных балок на основании Винклера с учетом их физической нелинейности.


Sign in / Sign up

Export Citation Format

Share Document