Measurement and Analysis of Total-Pressure Unsteadiness Data From an Axial-Flow Compressor Stage

1982 ◽  
Vol 104 (2) ◽  
pp. 479-488 ◽  
Author(s):  
W. C. Zierke ◽  
T. H. Okiishi

A fast-response, total-pressure probe was used with a periodically sampling and averaging data acquisition system to study the unsteady total-pressure field in an axial-flow turbomachine. Periodically unsteady total-pressure data were used to demonstrate some of the ways in which turbomachine blade wake transport and interaction influences the energy transfer involved. Observed trends of periodic variations in local total-pressure values could be explained in terms of the details of energy transfer associated with the different kinds of fluid particles (freestream, wake segment, blade surface boundary layer, mixed) moving through a blade row.

1999 ◽  
Vol 121 (1) ◽  
pp. 59-66 ◽  
Author(s):  
M. G. Beiler ◽  
T. H. Carolus

A numerical analysis of the flow in axial flow fans with skewed blades has been conducted to study the three-dimensional flow phenomena pertaining to this type of blade shape. The particular fans have a low pressure rise and are designed without stator. Initial studies focused on blades skewed in the circumferential direction, followed by investigations of blades swept in the direction of the blade chord. A Navier–Stokes code was used to investigate the flow. The simulation results of several fans were validated experimentally. The three-dimensional velocity field was measured in the fixed frame of reference with a triple sensor hot-film probe. Total pressure distribution measurements were performed with a fast response total pressure probe. The results were analyzed, leading to a design method for fans with swept blades. Forward swept fans designed accordingly exhibited good aerodynamic performance. The sound power level, measured on an acoustic fan test facility, improved.


1997 ◽  
Vol 119 (4) ◽  
pp. 985-994 ◽  
Author(s):  
N. Suryavamshi ◽  
B. Lakshminarayana ◽  
J. Prato ◽  
J. R. Fagan

The results from measurements of the unsteady total pressure field downstream of an embedded stage of a three stage axial flow compressor are presented in this paper. The measurements include area traverses of a high response kulite total pressure probe and a pneumatic five hole probe downstream of stator 2 at the peak efficiency operating point for the compressor. These data indicate that both the shaft-resolved and unresolved fluctuations contribute to the unsteadiness of the total pressure field in multistage compressors. Specifically, regions associated with high levels of unsteadiness and, consequently, high levels of mixing including both the hub and casing end walls and the airfoil wakes have significant levels of shaft resolved and unresolved unsteadiness. Temporal variations of stator exit flow are influenced by both shaft resolved and unresolved unsteadiness distributions. The limitations of state-of-the-art instrumentation for making measurements in moderate and high speed turbomachinery and the decomposition used to analyze these data are also discussed.


Author(s):  
L. J. Lenke ◽  
H. Simon

New blading concepts as used in modern transonic axial-flow compressors require improved calculation methods. Here the turbulence modelling has great influence. Therefore a quasi-three-dimensional compressor blade with subsonic inlet conditions is calculated using different turbulence models. A low-Reynolds number k-ϵ, the k-ω model and an explicit algebraic Reynolds stress model are considered in this investigation. The results from these calculations in form of comparisons between the predicted isentropic Mach number distributions, profile losses and exit flow angles with experimental data are presented in this paper. They demonstrate the differences between the models in the prediction of the separation behavior of blade surface boundary layer especially which are introduced by shocks. For the high inlet Mach numbers the models differ also in the prediction of losses and deviation angles at design and off-design conditions.


Author(s):  
Mehmet Mersinligil ◽  
Jean-Franc¸ois Brouckaert ◽  
Julien Desset

This paper presents the first experimental engine and test rig results obtained from a fast response cooled total pressure probe. The first objective of the probe design was to favor continuous immersion of the probe into the engine to obtain time series of pressure with a high bandwidth and therefore statistically representative average fluctuations at the blade passing frequency. The probe is water cooled by a high pressure cooling system and uses a conventional piezo-resistive pressure sensor which yields therefore both time-averaged and time-resolved pressures. The initial design target was to gain the capability of performing measurements at the temperature conditions typically found at high pressure turbine exit (1100–1400K) with a bandwidth of at least 40kHz and in the long term at combustor exit (2000K or higher). The probe was first traversed at the turbine exit of a Rolls-Royce Viper turbojet engine, at exhaust temperatures around 750 °C and absolute pressure of 2.1bars. The probe was able to resolve the high blade passing frequency (≈23kHz) and several harmonics up to 100kHz. Besides the average total pressure distributions from the radial traverses, phase-locked averages and random unsteadiness are presented. The probe was also used in a virtual three-hole mode yielding unsteady yaw angle, static pressure and Mach number. The same probe was used for measurements in a Rolls-Royce intermediate pressure burner rig. Traverses were performed inside the flame tube of a kerosene burner at temperatures above 1600 °C. The probe successfully measured the total pressure distribution in the flame tube and typical frequencies of combustion instabilities were identified during rumble conditions. The cooling performance of the probe is compared to estimations at the design stage and found to be in good agreement. The frequency response of the probe is compared to cold shock tube results and a significant increase in the natural frequency of the line-cavity system formed by the conduction cooled screen in front of the miniature pressure sensor were observed.


Author(s):  
Julien Clinckemaillie ◽  
Tony Arts

This paper aims at evaluating the characteristics of the wakes periodically shed by the rotating bars of a spoked-wheel type wake generator installed upstream of a high-speed low Reynolds linear low-pressure turbine blade cascade. Due to the very high bar passing frequency obtained with the rotating wake generator (fbar = 2.4−5.6 kHz), a fast-response pressure probe equipped with a single 350 mbar absolute Kulite sensor has been used. In order to measure the inlet flow angle fluctuations, an angular aerodynamic calibration of the probe allowed the use of the virtual three-hole mode; additionally, yielding yaw corrected periodic total pressure, static pressure and Mach number fluctuations. The results are presented for four bar passing frequencies (fbar = 2.4/3.2/4.6/5.6 kHz), each tested at three isentropic inlet Mach numbers M1,is = 0.26/0.34/0.41 and for Reynolds numbers varying between Re1,is = 40,000 and 58,000, thus covering a wide range of engine representative flow coefficients (ϕ = 0.44−1.60). The measured wake characteristics show fairly good agreement with the theory of fixed cylinders in a cross-flow and the evaluated total pressure losses and flow angle variations generated by the rotating bars show fairly good agreement with theoretical results obtained from a control volume analysis.


2018 ◽  
Vol 140 (8) ◽  
Author(s):  
Jichao Li ◽  
Juan Du ◽  
Mingzhen Li ◽  
Feng Lin ◽  
Hongwu Zhang ◽  
...  

The effects of water ingestion on the performance of an axial flow compressor are experimentally studied with and without endwall treatment. The background to the work is derived from the assessment of airworthiness for an aero-engine. The stability-enhancing effects with endwall treatments under rain ingestion are not previously known. Moreover, all the endwall treatments are designed under dry air conditions in the compressor. Water ingestion at 3% and 5% relative to the design mass flow proposed in the airworthiness standard are applied to initially investigate the effects on the performance under smooth casing (SC). Results show that the water ingestions are mainly located near the casing wall after they move through the rotor blade row. The pressure rise coefficient increases, efficiency declines, and torque increases under the proposed water ingestion. The increase of the inlet water increases the thickness of the water film downstream the rotor blade row and aggravates the adverse effects on the performances. Subsequently, three endwall treatments, namely circumferential grooves, axial slots, and hybrid slots–grooves, are tested with and without water ingestion. Compared with no water ingestion, the circumferential grooves basically have no resistance to the water ingestion. The axial slots best prevent the drop of the pressure rise coefficient induced by water ingestion, and hybrid slots–grooves are the second-best place owing to the contribution of the front axial slots. Therefore, the hybrid slots–grooves can not only extend the stall margin with less efficiency penalty compared with axial slots, but also prevent rain ingestion from worsening the compressor performance.


Sign in / Sign up

Export Citation Format

Share Document