Design Concept and Development of a Heavy-Duty Truck Diesel Engine for Better Fuel Economy

1983 ◽  
Vol 105 (3) ◽  
pp. 690-696
Author(s):  
A. Kobayashi ◽  
M. Ozawa ◽  
M. Noda ◽  
K. Kikuchi

Due to the increasing price of fuel, demands for fuel economy of heavy-duty trucks become severer year by year, and many efforts, such as reduction of air drag of vehicle, optimization of transmission and engine performance, improvement of engine combustion, etc., have been taken to meet these demands. However, requirements for the reduction of fuel consumption are expected to become even more critical, so the authors have studied a new design concept for heavy duty truck diesel engines to satisfy these requirements. The basic idea for getting a fuel-economic engine is to make the engine as small as possible and also to apply higher boost turbocharging for obtaining a sufficiently high output. However, measures to improve the undesirable problems which conventional turbocharged engines possess, such as lack of acceleration response and low-speed torque, increase of thermal and mechanical loads, shortage of engine brake torque, poor cold start ability, etc., should also be pursued. A chassis-mounted air-to-air intercooler, inertia-charged air induction system, highly backward-curved impeller of turbocharger, electronically controlled fuel injection timing device, etc., have been applied. And a new design technique as well as new material and construction have also been applied. This engine was installed to a long-haul truck with a gross weight of around 20,000 kg (44,000 lbs) and got better fuel mileage, as expected.

2013 ◽  
Vol 465-466 ◽  
pp. 322-326 ◽  
Author(s):  
M. Adlan Abdullah ◽  
Farid Nasir Ani ◽  
Masjuki Hassan

It is in the interest of proponents of biodiesel to increase the utilization of the renewable fuel. The similarities of the methyl ester properties to diesel fuel and its miscibility proved to be an attractive advantage. It is however generally accepted that there are some performance and emissions deficit when a diesel engine is operated with biodiesel. There are research efforts to improve the diesel engine design to optimize the combustion with biodiesel. Since the common rail engines operates on flexible injection strategies, there exist an opportunity to improve engine performance and offset the fuel economy deficit by means of optimizing the engine control strategies. This approach may prove to be more practical and easily implemented. This study investigated the effects of the fuel injection parameters - rail pressure, injection duration and injection timing - on a common rail passenger car engine in terms of the fuel economy. Palm oil based biodiesel up to 30% blend in diesel was used in this study. The end of injection, (EOI), was found to be the most important parameter for affecting fuel consumption and thermal efficiency.


Author(s):  
Shuonan Xu ◽  
David Anderson ◽  
Mark Hoffman ◽  
Robert Prucka ◽  
Zoran Filipi

Energy security concerns and an abundant supply of natural gas in the USA provide the impetus for engine designers to consider alternative gaseous fuels in the existing engines. The dual-fuel natural-gas diesel engine concept is attractive because of the minimal design changes, the ability to preserve a high compression ratio of the baseline diesel, and the lack of range anxiety. However, the increased complexity of a dual-fuel engine poses challenges, including the knock limit at a high load, the combustion instability at a low load, and the transient response of an engine with directly injected diesel fuel and port fuel injection of compressed natural gas upstream of the intake manifold. Predictive simulations of the complete engine system are an invaluable tool for investigations of these conditions and development of dual-fuel control strategies. This paper presents the development of a phenomenological combustion model of a heavy-duty dual-fuel engine, aided by insights from experimental data. Heat release analysis is carried out first, using the cylinder pressure data acquired with both diesel-only and dual-fuel (diesel and natural gas) combustion over a wide operating range. A diesel injection timing correlation based on the injector solenoid valve pulse widths is developed, enabling the diesel fuel start of injection to be detected without extra sensors on the fuel injection cam. The experimental heat release trends are obtained with a hybrid triple-Wiebe function for both diesel-only operation and dual-fuel operation. The ignition delay period of dual-fuel operation is examined and estimated with a predictive correlation using the concept of a pseudo-diesel equivalence ratio. A four-stage combustion mechanism is discussed, and it is shown that a triple-Wiebe function has the ability to represent all stages of dual-fuel combustion. This creates a critical building block for modeling a heavy-duty dual-fuel turbocharged engine system.


2017 ◽  
Vol 19 (2) ◽  
pp. 202-213 ◽  
Author(s):  
Michal Pasternak ◽  
Fabian Mauss ◽  
Christian Klauer ◽  
Andrea Matrisciano

A numerical platform is presented for diesel engine performance mapping. The platform employs a zero-dimensional stochastic reactor model for the simulation of engine in-cylinder processes. n-Heptane is used as diesel surrogate for the modeling of fuel oxidation and emission formation. The overall simulation process is carried out in an automated manner using a genetic algorithm. The probability density function formulation of the stochastic reactor model enables an insight into the locality of turbulence–chemistry interactions that characterize the combustion process in diesel engines. The interactions are accounted for by the modeling of representative mixing time. The mixing time is parametrized with known engine operating parameters such as load, speed and fuel injection strategy. The detailed chemistry consideration and mixing time parametrization enable the extrapolation of engine performance parameters beyond the operating points used for model training. The results show that the model responds correctly to the changes of engine control parameters such as fuel injection timing and exhaust gas recirculation rate. It is demonstrated that the method developed can be applied to the prediction of engine load–speed maps for exhaust NOx, indicated mean effective pressure and fuel consumption. The maps can be derived from the limited experimental data available for model calibration. Significant speedup of the simulations process can be achieved using tabulated chemistry. Overall, the method presented can be considered as a bridge between the experimental works and the development of mean value engine models for engine control applications.


2021 ◽  
pp. 146808742110012
Author(s):  
Nicola Giramondi ◽  
Anders Jäger ◽  
Daniel Norling ◽  
Anders Christiansen Erlandsson

Thanks to its properties and production pathways, ethanol represents a valuable alternative to fossil fuels, with potential benefits in terms of CO2, NOx, and soot emission reduction. The resistance to autoignition of ethanol necessitates an ignition trigger in compression-ignition engines for heavy-duty applications, which in the current study is a diesel pilot injection. The simultaneous direct injection of pure ethanol as main fuel and diesel as pilot fuel through separate injectors is experimentally investigated in a heavy-duty single cylinder engine at a low and a high load point. The influence of the nozzle hole number and size of the diesel pilot injector on ethanol combustion and engine performance is evaluated based on an injection timing sweep using three diesel injector configurations. The tested configurations have the same geometric total nozzle area for one, two and four diesel sprays. The relative amount of ethanol injected is swept between 78 – 89% and 91 – 98% on an energy basis at low and high load, respectively. The results show that mixing-controlled combustion of ethanol is achieved with all tested diesel injector configurations and that the maximum combustion efficiency and variability levels are in line with conventional diesel combustion. The one-spray diesel injector is the most robust trigger for ethanol ignition, as it allows to limit combustion variability and to achieve higher combustion efficiencies compared to the other diesel injector configurations. However, the two- and four-spray diesel injectors lead to higher indicated efficiency levels. The observed difference in the ethanol ignition dynamics is evaluated and compared to conventional diesel combustion. The study broadens the knowledge on ethanol mixing-controlled combustion in heavy-duty engines at various operating conditions, providing the insight necessary for the optimization of the ethanol-diesel dual-injection system.


Author(s):  
Ripudaman Singh ◽  
Andrew Mansfield ◽  
Margaret Wooldridge

Emissions compliance during engine start-up conditions is a major obstacle for current automotive manufacturers across global markets. The challenges to meeting emissions targets are both due to increasingly stringent regulations and the difficulty in developing control strategies for a high degree-of-freedom and highly non-linear system. Online extremum-seeking (ES) methods offer a promising alternative to traditional optimization based on design-of-experiment based automotive calibration. With extremum-seeking methods, results from all prior experiments are used to intelligently and efficiently generate the next iteration of the control parameter(s). In this work, the applicability of the online extremum-seeking method is explored to optimize five performance variables (injection timing for two injection events, the injection fuel mass divided between the first and second injection events, air-fuel equivalence ratio and exhaust cam timing) to minimize brake specific fuel consumption while imposing different constraints on NOx emissions. The experiments were conducted using a production turbocharged four-cylinder gasoline engine with an advanced fuel injection system. The results show the utility of the ES strategy to quickly identify optimal control parameter combinations and the emissions and engine performance improvements during the calibration process. The results also demonstrate the dramatic benefit of the ES calibration strategy in terms of test time required.


2016 ◽  
Vol 819 ◽  
pp. 443-448 ◽  
Author(s):  
S.F. Zainal Abidin ◽  
Mohd Farid Muhamad Said ◽  
Azhar Abdul Aziz ◽  
Mohd Azman Abas ◽  
N.I. Arishad

In automotive engine applications, the spark ignition (SI) engines can operate at various engine speed and load conditions. However, most of the time was spend at part load operations, where they operate below their rated output especially during cruising or idling. The needs of improvement in term of engine efficiency at part load operation become more popular among the engine manufacturers. One of the main reasons for efficiency dropped at part load conditions is the flow restrictions at the throttle valve opening area due to nearly-close position to control amount of inducted air into the cylinder, which leads to increasing in pumping losses. Hence, there are a lot of studies and investigations have been carried out to tackle these problems without sacrificing the original performance. This paper will investigate further the engine efficiency, performance as well as fuel economy by using one-dimensional (1-D) simulation tool. A baseline simulation model of a 1.6 liters four cylinders, port fuel injection engine has been developed based on the actual engine geometries. This baseline model applied predictive combustion to predict the amount of cylinder pressure based on actual ignition and injection timing on bench. The simulated results show a very good agreement with the measured data. Additionally, this study also proved that the deactivation half of the cylinders can significantly reduce the pumping losses of fired cylinder while eliminated the pumping work of unfired cylinders.


Author(s):  
Praveen Kandulapati ◽  
Chuen-Sen Lin ◽  
Dennis Witmer ◽  
Thomas Johnson ◽  
Jack Schmid ◽  
...  

Synthetic fuels produced from non-petroleum based feedstocks can effectively replace the depleting petroleum based conventional fuels while significantly reducing the emissions. The zero sulfur content and the near zero percentage of aromatics in the synthetic fuels make them promising clean fuels to meet the upcoming emissions regulations. However due to their significantly different properties when compared to the conventional fuels; the existing engines must be tested extensively to study their performance with the new fuels. This paper reports a detailed in-cylinder pressure measurement based study made on adaptability of the engine control module (ECM) of a modern heavy duty diesel engine to optimize the engine performance with the F-T diesel fuel. During this study, the F-T and Conventional diesel fuels were tested at different loads and various injection timing changes made with respect to the manufacturer setting. Results from these tests showed that the ECM used significantly different injection timings for the two fuels in the process of optimizing the engine performance. For the same power output the ECM used a 2° advance in the injection timing with respect to the manufacturer setting at the full load and 1° retard at the no load condition. While the injection timings used by the ECM were same for both the fuels at the 50% load condition. However, a necessity for further changes in the control strategies used by the ECM were observed to get the expected advantages with the F-T fuels.


2013 ◽  
Vol 465-466 ◽  
pp. 448-452
Author(s):  
Mas Fawzi ◽  
Bukhari Manshoor ◽  
Yoshiyuki Kidoguchi ◽  
Yuzuru Nada

Previous work shows that gas-jet ignition with two-stage injection technique is effective to extend lean combustible ranges of CNG engines. In this report, the robustness of the gas-jet ignition with two-stage injection method was investigated purposely to improve the performance of a lean burn direct injection CNG engine. The experiment was conducted using an engine at speed of 900 rpm, fuel-injection-pressure of 3MPa, equivalence ratio at 0.8, and ignition timing at top dead center. The effect of first injection timing on the test engine performance and exhaust emission was analyzed. First injection timings near the gas-jet ignition produced unstable combustion with occurrence of misfires except at a timing which produced distinctively good combustion with low HC and CO emissions. Computational fluid dynamics was used to provide hindsight of the fuel-air mixture distribution that might be the cause of misfires occurrence at certain injection timings.


Sign in / Sign up

Export Citation Format

Share Document