scholarly journals The Formation and Composition of the Gas Content of Sea Ice

1979 ◽  
Vol 22 (86) ◽  
pp. 67-81 ◽  
Author(s):  
V. L. Tsurikov

Abstract The different factors contributing to the formation of the gas porosity of sea ice are: (Ia) gases captured during the formation of the initial ice cover, (Ib) gases released from solution during the initial freezing of sea-water, (Ic) the inclusion of gases rising from the sea bottom, (2a) the substitution of gas for brine drained from the ice during times of melting, (2b) the release of gas from the brine within the ice during the course of partial freezing, and (2c) the formation of voids filled with water vapour during the course of internal melting. An analysis is made of each of these processes and it is concluded that processes Ib, 2a, and 2C are important. Process Ic may also be a major effect but it is difficult to evaluate until the rate of gas release from the sea floor is better known. The migration of air pockets into the ice from the overlying snow is shown to be a possible but not a significant effect. Available data on the composition of gas in sea ice are reviewed and it is shown to be significantly different from air. Possible causes for these differences are discussed. The porosity of sea ice, i.e. the total relative volume of its gas plus its brine inclusions, is one of the factors strongly affecting its strength, as has been shown by Tsurikov (1947) and by Weeks and Assur (1968). In seas with high salinities the effect of the presence of brine within the ice will usually be the dominant factor. However on water bodies with low salinities the effect of the gas included within the ice may be greater than the effect of the brine. Despite its significance there have not been any attempts at a quantitative analysis of the entrapment of gas in sea ice. This paper is an attempt at such a study.

1979 ◽  
Vol 22 (86) ◽  
pp. 67-81 ◽  
Author(s):  
V. L. Tsurikov

AbstractThe different factors contributing to the formation of the gas porosity of sea ice are: (Ia) gases captured during the formation of the initial ice cover, (Ib) gases released from solution during the initial freezing of sea-water, (Ic) the inclusion of gases rising from the sea bottom, (2a) the substitution of gas for brine drained from the ice during times of melting, (2b) the release of gas from the brine within the ice during the course of partial freezing, and (2c) the formation of voids filled with water vapour during the course of internal melting. An analysis is made of each of these processes and it is concluded that processes Ib, 2a, and 2C are important. Process Ic may also be a major effect but it is difficult to evaluate until the rate of gas release from the sea floor is better known. The migration of air pockets into the ice from the overlying snow is shown to be a possible but not a significant effect. Available data on the composition of gas in sea ice are reviewed and it is shown to be significantly different from air. Possible causes for these differences are discussed.The porosity of sea ice, i.e. the total relative volume of its gas plus its brine inclusions, is one of the factors strongly affecting its strength, as has been shown by Tsurikov (1947) and by Weeks and Assur (1968). In seas with high salinities the effect of the presence of brine within the ice will usually be the dominant factor. However on water bodies with low salinities the effect of the gas included within the ice may be greater than the effect of the brine. Despite its significance there have not been any attempts at a quantitative analysis of the entrapment of gas in sea ice. This paper is an attempt at such a study.


2002 ◽  
Vol 48 (161) ◽  
pp. 177-191 ◽  
Author(s):  
Jean-Louis Tison ◽  
Christian Haas ◽  
Marcia M. Gowing ◽  
Suzanne Sleewaegen ◽  
Alain Bernard

AbstractDuring an ice-tank experiment, samples were taken to study the processes of acquisition and alteration of the gas properties in young first-year sea ice during a complete growth–warming–cooling cycle. The goal was to obtain reference levels for total gas content and concentrations of atmospheric gases (O2, N2, CO2) in the absence of significant biological activity. The range of total gas-content values obtained (3.5–18 mL STP kg−1) was similar to previous measurements or estimates. However, major differences occurred between current and quiet basins, showing the role of the water dynamics at the ice–water interface in controlling bubble nucleation processes. Extremely high CO2concentrations were observed in all the experiments (up to 57% in volume parts). It is argued that these could have resulted from two unexpected biases in the experimental settings. Concentrations in bubbles nucleated at the interface are controlled by diffusion both from the ice–water interface towards the well-mixed reservoir and between the interface water and the bubble itself. This double kinetic effect results in a transition of the gas composition in the bubbles from values close to solubility in sea water toward values close to atmospheric, as the ice cover builds up.


1976 ◽  
Vol 13 (1) ◽  
pp. 126-135 ◽  
Author(s):  
B. J. Fryer ◽  
R. W. Hutchinson

Recent studies of volcanogenic base metal sulfide deposits and of metalliferous sediments in the Red Sea indicate precipitation of iron and base metals under conditions varying from reducing to oxidizing, at or near sites of fumarolic brine emission onto the sea floor. Differing lithofacies of iron-rich sediments were apparently deposited penecontemporaneously, mainly in response to changing chemical, biological, and sedimentary lithofacies conditions.Iron-rich sediments associated with the cupriferous pyrite bodies of Cyprus have been studied to determine the behavior of Fe, Mn, Cu, Zn, Pb, Ni, Co, Cr, Sn, Mo, Ag, and Au, when these fumarolic brines enter the sea bottom environment. Variations in metal abundances and ratios indicate that rapidly changing Eh is a major factor controlling metal deposition on the sea floor. The Fe/Mn ratio in these sediments is a useful indicator of the amount of interaction of these fumarolic brines and normal oxygenated sea water. Results suggest that zinc, copper, and gold are concentrated in the high Fe/Mn ratio proximal sediments; nickel is concentrated in the low Fe/Mn ratio distal sediments; and lead, silver, tin, and molybdenum are relatively unaffected by oxidation of the fumarolic brine solution by normal sea water.These concepts of sea floor deposition controlling the distribution of metals may also be applicable to other types of stratabound metalliferous deposits, like certain skarn, greisen, and gold ores, heretofore considered to be of epigenetic origin.


1991 ◽  
Vol 28 (11) ◽  
pp. 1834-1842 ◽  
Author(s):  
Larry D. Dyke

Thawing of ice-bonded sediment below the sea floor accompanies sea-level rise and shoreline retreat along the Beaufort Sea coast. The rate of thaw is primarily controlled by the warm spring and summer discharge of the Mackenzie River, which affects sea-bottom temperatures to water depths of 10–20 m. The intensity of the warming at any one location decreases with depth until continuous sub-0 °C temperatures are encountered. Sea-level rise eventually brings the sea floor into the cold sea-water zone and thawing stops. Therefore thawing is also controlled by the residence time in the warm zone. Sedimentation or scouring can, respectively, slow or accelerate the increase in water depth and thereby modify the rate of thaw progression. This, combined with changes in the rate of coastal retreat, can produce a subbottom frost table with considerable relief. In the extreme, ice bonding within a few metres of the sea floor can be explained by accelerated submergence.


1997 ◽  
Vol 43 (143) ◽  
pp. 138-151 ◽  
Author(s):  
M. O. Jeffries ◽  
K. Morris ◽  
W.F. Weeks ◽  
A. P. Worby

AbstractSixty-three ice cores were collected in the Bellingshausen and Amundsen Seas in August and September 1993 during a cruise of the R.V. Nathaniel B. Palmer. The structure and stable-isotopic composition (18O/16O) of the cores were investigated in order to understand the growth conditions and to identify the key growth processes, particularly the contribution of snow to sea-ice formation. The structure and isotopic composition of a set of 12 cores that was collected for the same purpose in the Bellingshausen Sea in March 1992 are reassessed. Frazil ice and congelation ice contribute 44% and 26%, respectively, to the composition of both the winter and summer ice-core sets, evidence that the relatively calm conditions that favour congelation-ice formation are neither as common nor as prolonged as the more turbulent conditions that favour frazil-ice growth and pancake-ice formation. Both frazil- and congelation-ice layers have an av erage thickness of 0.12 m in winter, evidence that congelation ice and pancake ice thicken primarily by dynamic processes. The thermodynamic development of the ice cover relies heavily on the formation of snow ice at the surface of floes after sea water has flooded the snow cover. Snow-ice layers have a mean thickness of 0.20 and 0.28 m in the winter and summer cores, respectively, and the contribution of snow ice to the winter (24%) and summer (16%) core sets exceeds most quantities that have been reported previously in other Antarctic pack-ice zones. The thickness and quantity of snow ice may be due to a combination of high snow-accumulation rates and snow loads, environmental conditions that favour a warm ice cover in which brine convection between the bottom and top of the ice introduces sea water to the snow/ice interface, and bottom melting losses being compensated by snow-ice formation. Layers of superimposed ice at the top of each of the summer cores make up 4.6% of the ice that was examined and they increase by a factor of 3 the quantity of snow entrained in the ice. The accumulation of superimposed ice is evidence that melting in the snow cover on Antarctic sea-ice floes ran reach an advanced stage and contribute a significant amount of snow to the total ice mass.


1969 ◽  
Vol 35 ◽  
pp. 67-70 ◽  
Author(s):  
Niels Nørgaard-Pedersen ◽  
Sofia Ribeiro ◽  
Naja Mikkelsen ◽  
Audrey Limoges ◽  
Marit-Solveig Seidenkrantz

The marine record of the Independence–Danmark fjord system extending out to the Wandel Hav in eastern North Greenland (Fig. 1A) is little known due to the almost perennial sea-ice cover, which makes the region inaccessible for research vessels (Nørgaard-Pedersen et al. 2008), and only a few depth measurements have been conducted in the area. In 2015, the Villum Research Station, a new logistic base for scientific investigations, was opened at Station Nord. In contrast to the early exploration of the region, it is now possible to observe and track the seasonal character and changes of ice in the fjord system and the Arctic Ocean through remote sensing by satellite radar systems. Satellite data going back to the early 1980s show that the outer part of the Independence–Danmark fjord system is characterised by perennial sea ice whereas both the southern part of the fjord system and an area 20–30 km west of Station Nord are partly ice free during late summer (Fig. 1B). Hence, marine-orientated field work can be conducted from the sea ice using snow mobiles, and by drilling through the ice to reach the underlying water and sea bottom.


2014 ◽  
Vol 25 (2) ◽  
pp. 124-131
Author(s):  
Jifei Ma ◽  
Zongjun Du ◽  
Wei Luo ◽  
Yong Yu ◽  
Yinxin Zeng ◽  
...  

1976 ◽  
Vol 17 (77) ◽  
pp. 507-519 ◽  
Author(s):  
C. Richardson

Quantitative measurements of the liquid water phase in a sample of sea ice were made with a nuclear magnetic resonance spectrometer. The measurements are used to compute the phase relationships in sea ice as a function of temperature. A model for sea-water based upon a mixture of seven binary salts is used for these computations. The n.m.r. measurements are related to the solvation water which is associated with each binary salt. This solvation water is bound to the salt in a pseudo-crystalline structure, with the amount of water determined by the eutectic concentration of the salt. The results are given in tabular form and differ somewhat from previously published tables. Two controversial hydrated salts were added to the table, based on the n.m.r. data.


2015 ◽  
Vol 56 (69) ◽  
pp. 1-8 ◽  
Author(s):  
Mats A. Granskog ◽  
Daiki Nomura ◽  
Susann Müller ◽  
Andreas Krell ◽  
Takenobu Toyota ◽  
...  

AbstractAbsorption and fluorescence of chromophoric dissolved organic matter (CDOM) in sea ice and surface waters in the southern Sea of Okhotsk was examined. Sea-water CDOM had featureless absorption increasing exponentially with shorter wavelengths. Sea ice showed distinct absorption peaks in the ultraviolet, especially in younger ice. Older first-year sea ice had relatively flat absorption spectra in the ultraviolet range. Parallel factor analysis (PARAFAC) identified five fluorescent CDOM components, two humic-like and three protein-like. Sea water was largely governed by humic-like fluorescence. In sea ice, protein-like fluorescence was found in considerable excess relative to sea water. The accumulation of protein-like CDOM fluorescence in sea ice is likely a result of biological activity within the ice. Nevertheless, sea ice does not contribute excess CDOM during melt, but the material released will be of different composition than that present in the underlying waters. Thus, at least transiently, the CDOM introduced during sea-ice melt might provide a more labile source of fresher protein-like DOM to surface waters in the southern Sea of Okhotsk.


1968 ◽  
Vol 48 (1) ◽  
pp. 141-158 ◽  
Author(s):  
P. C. CROGHAN ◽  
A. P. M. LOCKWOOD

1. The isopod Mesidotea entomon has colonized the Baltic and certain Swedish lakes since the end of the last Ice Age. 2. The ionic regulation of Baltic animals and fresh-water animals (L. Mälaren) has been compared. 3. It has been possible to adapt Baltic animals to very dilute media, but 5% Askö sea water (5.5 mM/l. Na) appears to be the limit of adaptation. The haemolymph sodium concentration of Baltic animals from the very dilute media was considerably lowered. 4. The haemolymph sodium concentration in Mälaren animals is high (250 mM/l. Na) and comparable with that in Baltic animals in much more concentrated solution. The haemolymph ionic ratios of the Baltic and freshwater animals are similar. The Cl:Na ratio rises slightly in the more concentrated haemolymph samples. 5. From the concentration of ions in the haemolymph and in the total body water, the relative volume of the haemolymph was calculated. Mälaren animals appear to have a much larger haemolymph volume. 6. The permeability of the animals was determined from the rate of loss of sodium into de-ionized water. The permeability of the Mälaren animals is considerably reduced compared to the Baltic animals. Permeability is not related to the medium to which the animals had been adapted. 7. The sodium influx was determined using 22Na. The rate of active uptake was calculated from this. The maximal rate of active uptake was similar in Baltic and Mälaren animals. The sodium concentration of the medium at which active uptake was half maximum (KM) was considerably lower in Malaren animals than in Baltic animals. 8. The evolution of Mesidotea as a fresh-water animal is interpreted as a result of a reduction in permeability of the external surfaces to NaCl and an increase in the affinity of the active transport mechanism enabling the animal to maintain the haemolymph NaCl concentration in a steady state in fresh water.


Sign in / Sign up

Export Citation Format

Share Document