Rayleigh Damping Effects on Global Analysis of Umbilicals

Author(s):  
Lauro Massao Yamada da Silveira ◽  
Rafael Loureiro Tanaka ◽  
Joa˜o Paulo Zi´lio Novaes

Despite global analysis of umbilicals is a well-known area in the offshore systems design, some topics are still opened for discussions. One of these topics refers to the structural damping. Obviously, the viscous damping caused by hydrodynamic drag forces is the major source of damping to the whole system. However, in some severe load cases, the host vessel dynamics may induce high snatch loads to the umbilical top end and these loads are more related to structural damping, specifically in tension–elongation hysteresis, than to viscous damping. The snatch loads must be taken into account in the whole design process, which leads to an umbilical designed to resist to higher tension loads and implies also, in most cases, in over-dimensioned accessories, such as the bending limiters. Actually, due to the high level of friction between layers, the umbilical presents some level of structural damping which is, in fact, related to hysteretic moment-curvature and tension-elongation relations. This intrinsic structural damping may in fact contribute to the reduction of the snatch loads and considering it may reduce the level of conservatism in the design. However, due to the complexity and diversity of umbilical designs, it is not straightforward to come up with general-use hysteretic curves. A simplification then is to apply classic Rayleigh damping. Typically, damping levels of 5% are accepted in the offshore industry when using stiffness-proportional Rayleigh damping (the 5% damping is a percentage of the critical damping and is accounted for at the regular wave period or irregular wave spectral peak period). The problem here is that stiffness-proportional Rayleigh damping increases linearly with the frequency and the damping level at 1Hz, for example, may get to 60%. This fact indicates that the high-frequency part of the response may be simply discarded from the results, which in turn may lead to an incorrect, over-damped analysis. The present work aims tackling the Rayleigh damping issue, evaluating its effects on tension levels and spectral density of the tension time history. A recommendation of how to apply Rayleigh damping is proposed.

Author(s):  
J.L. Ceballos C. ◽  
T.J. Sullivan

The use of hybrid joints to provide pre-cast concrete and timber structures with ductile response and self-centering capability is becoming increasingly popular in New Zealand, as is evident by the increasing number of building solutions that incorporate the technology as well as the design provisions for hybrid systems currently included in the New Zealand Concrete standard. This paper raises some issues with the current code approach to estimate the inelastic seismic displacement demand on hybrid systems. The work then presents the results of a series of non-linear time history analyses of single degree of freedom (SDOF) systems characterised by the flag-shaped hysteretic rule, in order to identify a general, improved expression for the equivalent viscous damping of hybrid systems. The new equivalent viscous damping expression is expected to provide more reliable control of inelastic displacement demands for hybrid systems design used Displacement-Based Design (DBD) procedures. In addition, the last part of the paper also discusses how the findings in the paper could be utilised to provide improved control of displacement demands when hybrid systems are designed using force-based procedures.


2020 ◽  
Vol 16 (1) ◽  
pp. 63-70
Author(s):  
Mariia Barabash ◽  
Bogdan Pisarevskyi ◽  
Yaroslav Bashynskyi

AbstractThe purpose of this paper is to justify that it is necessary to take account of physical and mechanical properties of soil and different materials of erected structure for damping vibrations in dynamic loads; to suggest tools for modelling the damping effect (natural or engineering induced) between foundation and soil. Certain technique is suggested for modelling behaviour of structure in time history analysis with account of material damping. In the software, the damping effect is modelled in two variants: Rayleigh damping (for structure) and finite element of viscous damping. When solving this problem, the following results were obtained: physical meaning of material damping is described; Rayleigh damping coefficients were computed through modal damping coefficients. Numerical analysis is carried out for the structure together with soil in earthquake load using developed FE of viscous damping. Time history analysis was carried out for the problem. Peak values of displacement, speed and acceleration at the floor levels were compared. Analysis results are compared (with and without account of material damping). Significant influence of damping on the stress-strain state of the structure is confirmed. Scientific novelty of the paper is in the following: the damping effect is proved to happen regardless of the presence of installed structural damping equipment; technique for account of damping with Rayleigh damping coefficients is developed; new damping element is developed – FE of viscous damping (FE 62), its behaviour is described as linear mathematical model. Practical implications of the paper: developed technique and new FE enables the user to carry out numerical analysis properly and work out a set of measures on seismic safety for buildings and structures.


2000 ◽  
Vol 203 (12) ◽  
pp. 1915-1923 ◽  
Author(s):  
L.L. Stelle ◽  
R.W. Blake ◽  
A.W. Trites

Drag forces acting on Steller sea lions (Eumetopias jubatus) were investigated from ‘deceleration during glide’ measurements. A total of 66 glides from six juvenile sea lions yielded a mean drag coefficient (referenced to total wetted surface area) of 0.0056 at a mean Reynolds number of 5.5×10(6). The drag values indicate that the boundary layer is largely turbulent for Steller sea lions swimming at these Reynolds numbers, which are past the point of expected transition from laminar to turbulent flow. The position of maximum thickness (at 34 % of the body length measured from the tip of the nose) was more anterior than for a ‘laminar’ profile, supporting the idea that there is little laminar flow. The Steller sea lions in our study were characterized by a mean fineness ratio of 5.55. Their streamlined shape helps to delay flow separation, reducing total drag. In addition, turbulent boundary layers are more stable than laminar ones. Thus, separation should occur further back on the animal. Steller sea lions are the largest of the otariids and swam faster than the smaller California sea lions (Zalophus californianus). The mean glide velocity of the individual Steller sea lions ranged from 2.9 to 3.4 m s(−)(1) or 1.2-1.5 body lengths s(−)(1). These length-specific speeds are close to the optimum swim velocity of 1.4 body lengths s(−)(1) based on the minimum cost of transport for California sea lions.


2020 ◽  
Vol 26 ◽  
pp. 64-70
Author(s):  
Veronika Pavelcová ◽  
Tereza Poklopová ◽  
Michal Šejnoha ◽  
Tomáš Janda

The paper describes a finite element simulation of the response of a real underground structure subjected to earthquake using GEO5 FEM program. It concentrates on the influence of material damping with respect to a specific type of boundary condition prescribed at the bottom of the analyzed domain. It is seen that considering material damping is inevitable particularly in case of so called fixed boundary conditions to arrive at meaningful results. This is demonstrated on an artificial earthquake generated according to a design spectrum defined in Eurocode 8. A viscous damping ratio combined with the results of eigenvalue analysis is used to derive parameters of Rayleigh damping for three specific scenarios promoting the approach based on the lowest natural frequency as sufficiently accurate for the present task.


2012 ◽  
Vol 134 (6) ◽  
Author(s):  
R. E. Spears ◽  
S. R. Jensen

Nonlinearities, whether geometric or material, need to be addressed in seismic analysis. One good analysis method that can address these nonlinearities is direct time integration with Rayleigh damping. Modal damping is the damping typically specified in seismic analysis Codes and Standards (ASCE 4-98, 1998, “Seismic Analysis of Safety-Related Nuclear Structures and Commentary,” American Society of Civil Engineers, Reston, Virginia and ASCE/SEI 43-05, 2005, “Seismic Design Criteria for Structures, Systems, and Components in Nuclear Facilities,” American Society of Civil Engineers, Reston, Virginia.). Modal damping is constant for all frequencies where Rayleigh damping varies with frequency. An approach is proposed here for selection of Rayleigh damping coefficients to be used in seismic analyses that is consistent with given modal damping. The approach uses the difference between the modal damping response and the Rayleigh damping response along with effective mass properties of the model being evaluated to match overall system response levels. This paper provides a simple example problem to demonstrate the approach. It also provides results for a finite element model representing an existing piping system. Displacement, acceleration, and stress results are compared from model runs using modal damping and model runs using Rayleigh damping with coefficients selected using the proposed method.


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 693
Author(s):  
Petar Trslić ◽  
Edin Omerdic ◽  
Gerard Dooly ◽  
Daniel Toal

This paper presents a docking station heave motion prediction method for dynamic remotely operated vehicle (ROV) docking, based on the Adaptive Neuro-Fuzzy Inference System (ANFIS). Due to the limited power onboard the subsea vehicle, high hydrodynamic drag forces, and inertia, work-class ROVs are often unable to match the heave motion of a docking station suspended from a surface vessel. Therefore, the docking relies entirely on the experience of the ROV pilot to estimate heave motion, and on human-in-the-loop ROV control. However, such an approach is not available for autonomous docking. To address this problem, an ANFIS-based method for prediction of a docking station heave motion is proposed and presented. The performance of the network was evaluated on real-world reference trajectories recorded during offshore trials in the North Atlantic Ocean during January 2019. The hardware used during the trials included a work-class ROV with a cage type TMS, deployed using an A-frame launch and recovery system.


1982 ◽  
Vol 104 (4) ◽  
pp. 325-329 ◽  
Author(s):  
P. G. Bergan ◽  
E. Mollestad

A method for analyzing the dynamic behavior of marine pipelines subjected to impact loads or sudden forced movements is outlined. Inertia forces (also from hydrodynamic mass), hydrodynamic drag forces as well as friction and lift effects for a pipe at the sea bottom are accounted for. An extensive nonlinear formulation is used for the pipe itself; it includes large displacements and elasto-plastic material behavior. Aspects of the numerical formulation of the problem and the solution of the nonlinear dynamic equations are discussed. The examples show computed dynamic response for pipelines lying on the sea floor and for a pipe section freely submerged in water when subjected to various force and displacement histories.


Scanning ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Tobias Berthold ◽  
Guenther Benstetter ◽  
Werner Frammelsberger ◽  
Rosana Rodríguez ◽  
Montserrat Nafría

For advanced atomic force microscopy (AFM) investigation of chemical surface modifications or very soft organic sample surfaces, the AFM probe tip needs to be operated in a liquid environment because any attractive or repulsive forces influenced by the measurement environment could obscure molecular forces. Due to fluid properties, the mechanical behavior of the AFM cantilever is influenced by the hydrodynamic drag force due to viscous friction with the liquid. This study provides a numerical model based on computational fluid dynamics (CFD) and investigates the hydrodynamic drag forces for different cantilever geometries and varying fluid conditions for Peakforce Tapping (PFT) in liquids. The developed model was verified by comparing the predicted values with published results of other researchers and the findings confirmed that drag force dependence on tip speed is essentially linear in nature. We observed that triangular cantilever geometry provides significant lower drag forces than rectangular geometry and that short cantilever offers reduced flow resistance. The influence of different liquids such as ultrapure water or an ethanol-water mixture as well as a temperature induced variation of the drag force could be demonstrated. The acting forces are lowest in ultrapure water, whereas with increasing ethanol concentrations the drag forces increase.


Sign in / Sign up

Export Citation Format

Share Document