Combustion Phenomena of Alcohols in C. I. Engines

1989 ◽  
Vol 111 (3) ◽  
pp. 439-444 ◽  
Author(s):  
M. N. Saeed ◽  
N. A. Henein

A study was conducted on a direct-injection, single-cylinder, research-type diesel engine to determine the effect of adding ethanol or isopropanol to diesel fuel on the ignition delay period. The test parameters were alcohol content, intake-air properties, and fuel-air ratio. It was found that the ignition delay of alcohol-diesel blends is prolonged as the alcohol content is increased. Ethanol-diesel blends developed longer ignition delays than those developed by isopropanol-diesel blends. The results showed that ignition delay of alcohol-diesel blends can be effectively shortened using intake-air preheating and/or supercharging. The high activation energy of alcohols with respect to diesel fuel is believed to be responsible for the long ignition delays associated with the use of alcohols as alternate fuels in compression ignition engines.

Author(s):  
M M Roy

This study investigated the effect of n-heptane and n-decane on exhaust odour in direct injection (DI) diesel engines. The prospect of these alternative fuels to reduce wall adherence and overleaning, major sources of incomplete combustion, as well as odorous emissions has been investigated. The n-heptane was tested as a low boiling point fuel that can improve evaporation as well as wall adherence. However, the odour is a little worse with n-heptane and blends than that of diesel fuel due to overleaning of the mixture. Also, formaldehyde (HCHO) and total hydrocarbon (THC) in the exhaust increase with increasing n-heptane content. The n-decane was tested as a fuel with a high cetane number that can improve ignition delay, which has a direct effect on wall adherence and overleaning. However, with n-decane and blends, the odour rating is about 0.5-1 point lower than for diesel fuel. Moreover, the aldehydes and THC are significantly reduced. This is due to less wall adherence and proper mixture formation.


2019 ◽  
Vol 23 (5 Part A) ◽  
pp. 2651-2658
Author(s):  
Zhifei Wu ◽  
Tie Wang ◽  
Peng Zuo ◽  
Muhammad Iqbal

This paper discusses the impact of Fischer-Tropsch (F-T) diesel and methanol blended fuel, tentative engine was operated with fueled having F-T diesel and methanol blended fuel to compare the combustion and vibration characteristics. For this, 4100QBZL turbocharged diesel having parameters of F-T diesel fuel, FM5, FM10, FM15 methanol volume content was 5%, 10%, and 15%, respectively, have been selected for the experiment. Experimental studies have shown that when fueling with F-T diesel fuel, the ignition delay is shorter, the premixed combustion rate peak is lower, and vibration acceleration increases slightly than diesel fuel. Compared to the pure F-T diesel, the blended fuel has longer ignition delay period, higher the rate of pressure rise, combustion start point delayed, burning capacity increase, such as thermal efficiency is improved and vibration acceleration increased significantly.


2008 ◽  
Vol 130 (1) ◽  
Author(s):  
Murari Mohon Roy

This study investigated normal heptane (N-heptane)-diesel combustion and odorous emissions in a direct injection diesel engine during and after engine warmup at idling. The odor is a little worse with N-heptane and blends than that of diesel fuel due to overleaning of the mixture. In addition, formaldehyde (HCHO) and total hydrocarbon (THC) in the exhaust increase with increasing N-heptane content. However, 50% and 100% N-heptane showed lower eye irritation than neat diesel fuel. Due to low boiling point of N-heptane, adhering fuel on the combustion chamber wall is small and as a single-component C7 fuel, relatively high volatile components present in the exhaust are low. This may cause lower eye irritation. On the contrary, bulk in-cylinder gas temperature is lower and ignition delay significantly increases for 50% and 100% N-heptane due to the low boiling point, high latent heat of evaporation, and low bulk modulus of compressibility of N-heptane than standard diesel fuel. This longer ignition delay and lower bulk in-cylinder gas temperature of N-heptane blends deteriorate exhaust odor and emissions of HCHO and THC.


2018 ◽  
Vol 21 (3) ◽  
pp. 540-558 ◽  
Author(s):  
Jensen Samuel J ◽  
Ramesh A

Real-time prediction of in-cylinder combustion parameters is very important for robust combustion control in any internal combustion engine. Very little information is available in the literature for modeling the ignition delay period of multiple injections that occur in modern direct-injection diesel engines. Knowledge of the ignition delay period in diesel engines with multiple injections is of primary interest due to its impact on pressure rise during subsequent combustion, combustion noise and pollutant formation. In this work, a physics-based ignition delay prediction methodology has been proposed by suitably simplifying an approach available in the literature. The time taken by the fuel-spray tip to reach the liquid length is considered as the physical delay period of any particular injection pulse. An equation has been developed for predicting the saturation temperature at this location based on the temperature and pressure at the start of injection. Thus, iterative procedures are avoided, which makes the methodology suitable for real-time engine control. The chemical delay was modeled by assuming a global reaction mechanism while using the Arrhenius-type equation. Experiments were conducted on a fully instrumented state-of-the-art common-rail diesel engine test facility for providing inputs to develop the methodology. The thermodynamic condition before the main injection was obtained by modeling the pilot combustion phase using the Wiebe function. Thus, the ignition delays of both pilot and main injections could be predicted based on rail pressure, injection timing, injection duration, manifold pressure and temperature which are normally used as inputs to the engine control unit. When the methodology was applied to predict the ignition delays in three different common-rail diesel engines, the ignition delays of pilot and main combustion phases could be predicted within an error band of ±25, ±50 and ±80 µs, respectively, without further tuning. This method can hence be used in real-time engine controllers and hardware-in-the-loop systems.


Author(s):  
Vishal V Patil ◽  
Ranjit S Patil

In this study, different characteristics of sustainable renewable biodiesels (those have a high potential of their production worldwide and in India) were compared with the characteristics of neat diesel to determine optimistic biodiesel for the diesel engine at 250 bar spray pressure. Optimistic fuel gives a comparatively lower level of emissions and better performance than other selected fuels in the study. Rubber seed oil methyl ester was investigated as an optimistic fuel among the other selected fuels such as sunflower oil methyl ester, neem seed oil methyl ester, and neat diesel. To enhance the performance characteristics and to further decrease the level of emission characteristics of fuel ROME, further experiments were conducted at higher spray (injection) pressures of 500 bar, 625 bar, and 750 bar with varying ignition delay period via varying its spray timings such as 8°, 13°, 18°, 23°, 28°, and 33° before top dead center. Spray pressure 250 bar at 23° before top dead center was investigated as an optimistic operating condition where fuel rubber seed oil methyl ester gives negligible hydrocarbon emissions (0.019 g/kW h) while its nitrogen oxide (NOX) emissions were about 70% lesser than those observed with neat diesel, respectively.


2021 ◽  
Author(s):  
Thanigaivelan V ◽  
Lavanya R

Abstract Emission from the DI diesel engine is series setback for environment viewpoint. Intended for that investigates for alternative biofuel is persuaded. The important hitches with the utilization of biofuels and their blends in DI diesel engines are higher emanations and inferior brake-thermal efficiency as associated to sole diesel fuel. In this effort, Cashew nut shell liquid (CNSL) biodiesel, hydrogen and ethanol (BHE) mixtures remained verified in a direct-injection diesel engine with single cylinder to examine the performance and discharge features of the engine. The ethanol remained supplemented 5%, 10% and 15% correspondingly through enhanced CNSL as well as hydrogen functioned twin fuel engine. The experiments done in a direct injection diesel engine with single-cylinder at steadystate conditions above the persistent RPM (1500RPM). Throughout the experiment, emissions of pollutants such as fuel consumption rate (SFC), hydrocarbons (HC), carbon monoxide (CO), nitrogen oxides (NOx) and pressure of the fuel were also measured. cylinders. The experimental results show that, compared to diesel fuel, the braking heat of the biodiesel mixture is reduced by 26.79-24% and the BSFC diminutions with growing addition of ethanol from the CNSL hydrogen mixture. The BTE upsurges thru a rise in ethanol proportion with CNSL hydrogen mixtures. Finally, the optimum combination of ethanol with CNSL hydrogen blends led to the reduced levels of HC and CO emissions with trivial upsurge in exhaust gas temperature and NOx emissions. This paper reconnoiters the routine of artificial neural networks (ANN) to envisage recital, ignition and discharges effect.


Transport ◽  
2014 ◽  
Vol 29 (4) ◽  
pp. 440-448 ◽  
Author(s):  
Tomas Mickevičius ◽  
Stasys Slavinskas ◽  
Slawomir Wierzbicki ◽  
Kamil Duda

This paper presents a comparative analysis of the diesel engine performance and emission characteristics, when operating on diesel fuel and various diesel-biodiesel (B10, B20, B40, B60) blends, at various loads and engine speeds. The experimental tests were performed on a four-stroke, four-cylinder, direct injection, naturally aspirated, 60 kW diesel engine D-243. The in-cylinder pressure data was analysed to determine the ignition delay, the Heat Release Rate (HRR), maximum in-cylinder pressure and maximum pressure gradients. The influence of diesel-biodiesel blends on the Brake Specific Fuel Consumption (bsfc) and exhaust emissions was also investigated. The bench test results showed that when the engine running on blends B60 at full engine load and rated speed, the autoignition delay was 13.5% longer, in comparison with mineral diesel. Maximum cylinder pressure decreased about 1–2% when the amount of Rapeseed Methyl Ester (RME) expanded in the diesel fuel when operating at full load and 1400 min–1 speed. At rated mode, the minimum bsfc increased, when operating on biofuel blends compared to mineral diesel. The maximum brake thermal efficiency sustained at the levels from 0.3% to 6.5% lower in comparison with mineral diesel operating at full (100%) load. When the engine was running at maximum torque mode using diesel – RME fuel blends B10, B20, B40 and B60 the total emissions of nitrogen oxides decreased. At full and moderate load, the emission of carbon monoxide significantly raised as the amount of RME in fuel increased.


Sign in / Sign up

Export Citation Format

Share Document