Vortex Shedding From Bluff Bodies in a Shear Flow: A Review

1985 ◽  
Vol 107 (3) ◽  
pp. 298-306 ◽  
Author(s):  
Owen M. Griffin

This paper examines the effects of velocity shear on vortex shedding from stationary and vibrating bluff bodies. Experiments with circular cylindrical bodies and other cross sections such as D-section cylinders and rectangular cylinders, which were limited to conditions with length/diameter ratios less than L/D = 15 to 20, have shown that the spanwise cellular structure of the vortex shedding is dependent upon end conditions. The vortex shedding also is influenced strongly by the shear flow steepness parameter β¯ which is based upon the incident flow velocity gradient. Experimental evidence is available to show that moderate shear levels of practical importance (β¯∼0.01 to 0.015) do not appreciably decrease the probability of occurrence of vortex-excited oscillations for flexible structures and cables. The effects of incident shear on vortex shedding from stationary and vibrating bluff structures in both fluid media should be investigated further for long cylinders which have minimal end boundary effects. More definitive bounds for and details of this fluid-structure interaction are needed for applications in the wind engineering design of buildings and structures, and in the design of marine structures and cable systems.

1973 ◽  
Vol 60 (2) ◽  
pp. 401-409 ◽  
Author(s):  
D. J. Maull ◽  
R. A. Young

Experiments are described in which the vortex shedding from a bluff body and the base pressure coefficient have been measured in a shear flow. It is shown that the shedding breaks down into a number of spanwise cells in each of which the frequency is constant. The division between the cells is thought to be marked by a longitudinal vortex in the stream direction and this is supported by evidence from experiments where a longitudinal vortex was generated in an otherwise uniform flow.


2014 ◽  
Vol 96 ◽  
pp. 35-46 ◽  
Author(s):  
Shuyang Cao ◽  
Qiang Zhou ◽  
Zhiyong Zhou

1985 ◽  
Vol 107 (1) ◽  
pp. 61-66 ◽  
Author(s):  
R. D. Peltzer ◽  
D. M. Rooney

The present study examines the vortex street wake behavior of a flexible, helically wound, high aspect ratio marine cable in a linear shear flow. Particular attention is paid to the lock-on phenomena associated with uniform and sheared flow past the cable when it is forced to vibrate in the first mode, normal to the flow. An analysis is given of the effects on the vortex shedding and synchronization phenomena that are generated by placing distributions of spherical bluff body shapes along the span of the cable in uniform and sheared flow. The latter geometry is representative of a number of cable system deployments and has special consequencies for strumming in a shear flow. The effectiveness of these attached spheres as strumming-suppression devices is evaluated. Synchronized vibration and/or the presence of the bluff bodies significantly affected the spanwise character of the near wake cellular vortex shedding structure. The spanwise extent of the resonant, vortex-excited oscillations was significantly extended by the presence of the spheres along the cable span. This finding was particularly significant because it meant that the undesirable effects that accompanied synchronization would be extended over a longer portion of the cable span.


Soft Matter ◽  
2021 ◽  
Author(s):  
Varun Lochab ◽  
Shaurya Prakash

We quantify and investigate the effects of flow parameters on the extent of colloidal particle migration and the corresponding electrophoresis-induced lift force under combined electrokinetic and shear flow.


1980 ◽  
Vol 47 (2) ◽  
pp. 227-233 ◽  
Author(s):  
M. Kiya ◽  
M. Arie

Main features of the formation of vortex street from free shear layers emanating from two-dimensional bluff bodies placed in uniform shear flow which is a model of a laminar boundary layer along a solid wall. This problem is concerned with the mechanism governing transition induced by small bluff bodies suspended in a laminar boundary layer. Calculations show that the background vorticity of shear flow promotes the rolling up of the vortex sheet of the same sign whereas it decelerates that of the vortex sheet of the opposite sign. The steady configuration of the conventional Karman vortex street is not possible in shear flow. Theoretical vortex patterns are experimentally examined by a flow-visualization technique.


1980 ◽  
Vol 101 (4) ◽  
pp. 721-735 ◽  
Author(s):  
Masaru Kiya ◽  
Hisataka Tamura ◽  
Mikio Arie

The frequency of vortex shedding from a circular cylinder in a uniform shear flow and the flow patterns around it were experimentally investigated. The Reynolds number Re, which was defined in terms of the cylinder diameter and the approaching velocity at its centre, ranged from 35 to 1500. The shear parameter, which is the transverse velocity gradient of the shear flow non-dimensionalized by the above two quantities, was varied from 0 to 0·25. The critical Reynolds number beyond which vortex shedding from the cylinder occurred was found to be higher than that for a uniform stream and increased approximately linearly with increasing shear parameter when it was larger than about 0·06. In the Reynolds-number range 43 < Re < 220, the vortex shedding disappeared for sufficiently large shear parameters. Moreover, in the Reynolds-number range 100 < Re < 1000, the Strouhal number increased as the shear parameter increased beyond about 0·1.


1995 ◽  
Vol 287 ◽  
pp. 151-171 ◽  
Author(s):  
Hiroshi Sakamoto ◽  
Hiroyuki Haniu

Experiments to investigate the formation mechanism and frequency of vortex shedding from a sphere in uniform shear flow were conducted in a water channel using flow visualization and velocity measurement. The Reynolds number, defined in terms of the sphere diameter and approach velocity at its centre, ranged from 200 to 3000. The shear parameter K, defined as the transverse velocity gradient of the shear flow non-dimensionalized by the above two parameters, was varied from 0 to 0.25. The critical Reynolds number beyond which vortex shedding from the sphere occurred was found to be lower than that for uniform flow and decreased approximately linearly with increasing shear parameter. Also, the Strouhal number of the hairpin-shaped vortex loops became larger than that for uniform flow and increased as the shear parameter increased.The formation mechanism and the structure of vortex shedding were examined on the basis of series of photographs and subsequent image processing using computer graphics. The range of Reynolds number in the present investigation, extending up to 3000, could be classified into three regions on the basis of this study, and it was observed that the wake configuration did not differ substantially from that for uniform flow. Also, unlike the detachment point of vortex loops in uniform flow, which was irregularly located along the circumference of the sphere, the detachment point in shear flow was always on the high-velocity side.


1998 ◽  
Vol 14 (3) ◽  
pp. 153-159 ◽  
Author(s):  
Chou-Jiu Tsai ◽  
Ger-Jyh Chen

ABSTRACTIn this study, fluid flow around bluff bodies are studied to examine the vortex shedding phenomenon in conjuction with the geometrical shapes of these vortex shedders. These flow phenomena are numerically simulated. A finite volume method is employed to solve the incompressible two-dimensional Navier-Stokes equations. Thus, quantitative descriptions of the vortex shedding phenomenon in the near wake were made, which lead to a detailed description of the vortex shedding mechanism. Streamline contours, figures of lift coefficent, and figures of drag coefficent in various time, are presented, respectively, for a physical description.


2011 ◽  
Vol 677 ◽  
pp. 342-382 ◽  
Author(s):  
REMI BOURGUET ◽  
GEORGE E. KARNIADAKIS ◽  
MICHAEL S. TRIANTAFYLLOU

We investigate the in-line and cross-flow vortex-induced vibrations of a long cylindrical tensioned beam, with length to diameter ratio L/D = 200, placed within a linearly sheared oncoming flow, using three-dimensional direct numerical simulation. The study is conducted at three Reynolds numbers, from 110 to 1100 based on maximum velocity, so as to include the transition to turbulence in the wake. The selected tension and bending stiffness lead to high-wavenumber vibrations, similar to those encountered in long ocean structures. The resulting vortex-induced vibrations consist of a mixture of standing and travelling wave patterns in both the in-line and cross-flow directions; the travelling wave component is preferentially oriented from high to low velocity regions. The in-line and cross-flow vibrations have a frequency ratio approximately equal to 2. Lock-in, the phenomenon of self-excited vibrations accompanied by synchronization between the vortex shedding and cross-flow vibration frequencies, occurs in the high-velocity region, extending across 30% or more of the beam length. The occurrence of lock-in disrupts the spanwise regularity of the cellular patterns observed in the wake of stationary cylinders in shear flow. The wake exhibits an oblique vortex shedding pattern, inclined in the direction of the travelling wave component of the cylinder vibrations. Vortex splittings occur between spanwise cells of constant vortex shedding frequency. The flow excites the cylinder under the lock-in condition with a preferential in-line versus cross-flow motion phase difference corresponding to counter-clockwise, figure-eight orbits; but it damps cylinder vibrations in the non-lock-in region. Both mono-frequency and multi-frequency responses may be excited. In the case of multi-frequency response and within the lock-in region, the wake can lock in to different frequencies at various spanwise locations; however, lock-in is a locally mono-frequency event, and hence the flow supplies energy to the structure mainly at the local lock-in frequency.


1985 ◽  
Vol 38 (10) ◽  
pp. 1287-1289
Author(s):  
F. C. Moon ◽  
E. H. Dowell

While much of the linear theory of structural dynamics has been codified in numerous computer software, important problems remain such as inverse methods (modal synthesis or system identification) and optimization problems. Nonlinear problems, however, are a fertile ground for new research, especially those involving large deformations (e.g., crash simulation) and material nonlinearities. Structure interaction problems will continue to be a fruitful area of research including fluid-structure dynamics and interaction with acoustic noise, thermal fields, soils, and electromagnetic forces. For example, new knowledge about unsteady flows around bluff bodies is needed to make significant progress with dynamic interaction problems with bridge and building structures in unsteady winds. A new field which shows great promise for application is the theory of feedback control of flexible structures. Advances in this area could pay off in near-space engineering and robotics. The training of new researchers with backgrounds in both structural dynamics and control theory and experience is a high priority for the control-structure field, however.


Sign in / Sign up

Export Citation Format

Share Document