Natural Convection Experiments in a Stratified Liquid-Saturated Porous Medium

1986 ◽  
Vol 108 (3) ◽  
pp. 660-666 ◽  
Author(s):  
D. C. Reda

Natural convection heat transfer from a constant-flux cylinder, immersed vertically through a stratified (two-layer) liquid-saturated porous medium, was investigated experimentally. Measured radial temperature profiles and heat transfer rates agreed well with numerical predictions based on the work of Hickox and Gartling. The 1:6 permeability-ratio interface existing between the two layers was found to effectively trap buoyancy-driven fluid motion within the high-permeability region, beneath the interface. Within this high-permeability region, Nusselt number versus Rayleigh number data were found to correlate with previously measured results, obtained for the same basic geometry, but with a fully permeable upper-surface hydrodynamic boundary condition. In both cases, the vertical and radial extent of the region under study were large compared to the radius of the heat source. Combined results indicate that, for a given Rayleigh number in the Darcy-flow regime, heat transfer rates from cylinders immersed vertically in uniform liquid-saturated porous media of large vertical and radial extent potentially approach limiting values. Variable-porosity effects which occur in unconsolidated porous media adjacent to solid boundaries were investigated numerically for cases where the particle-to-heater diameter ratio was small (≈ 10−2). Results showed variable-porosity effects to have a negligible influence on the thermal field adjacent to such boundaries under conditions of Darcy flow.

Author(s):  
Degan Gerard ◽  
Sokpoli Amavi Ernest ◽  
Akowanou Djidjoho Christian ◽  
Vodounnou Edmond Claude

This research was devoted to the analytical study of heat transfer by natural convection in a vertical cavity, confining a porous medium, and containing a heat source. The porous medium is hydrodynamically anisotropic in permeability whose axes of permeability tensor are obliquely oriented relative to the gravitational vector and saturated with a Newtonian fluid. The side walls are cooled to the temperature  and the horizontal walls are kept adiabatic. An analytical solution to this problem is found for low Rayleigh numbers by writing the solutions of mathematical model in polynomial form of degree n of the Rayleigh number. Poisson equations obtained are solved by the modified Galerkin method. The results are presented in term of streamlines and isotherms. The distribution of the streamlines and the temperature fields are greatly influenced by the permeability anisotropy parameters and the thermal conductivity. The heat transfer decreases considerably when the Rayleigh number increases.


2018 ◽  
Vol 29 (10) ◽  
pp. 1850097 ◽  
Author(s):  
Abderrahmane Baïri ◽  
Najib Laraqi

This three-dimensional (3D) numerical work based on the volume control method quantifies the convective heat transfer occurring in a hemispherical cavity filled with a ZnO–H2O nanofluid saturated porous medium. Its main objective is to improve the cooling of an electronic component contained in this enclosure. The volume fraction of the considered monophasic nanofluid varies between 0% (pure water) and 10%, while the cupola is maintained isothermal at cold temperature. During operation, the active device generates a heat flux leading to high Rayleigh number reaching [Formula: see text] and may be inclined with respect to the horizontal plane at an angle ranging from 0[Formula: see text] to 180[Formula: see text] (horizontal position with cupola facing upwards and downwards, respectively) by steps of 15[Formula: see text]. The natural convective heat transfer represented by the average Nusselt number has been quantified for many configurations obtained by combining the tilt angle, the Rayleigh number, the nanofluid volume fraction and the ratio between the thermal conductivity of the porous medium’s solid matrix and that of the base fluid. This ratio has a significant influence on the free convective heat transfer and ranges from 0 (without porous media) to 70 in this work. The influence of the four physical parameters is analyzed and commented. An empirical correlation between the Nusselt number and these parameters is proposed, allowing determination of the average natural convective heat transfer occurring in the hemispherical cavity.


2003 ◽  
Vol 125 (2) ◽  
pp. 282-288 ◽  
Author(s):  
Bassam A/K Abu-Hijleh

The problem of laminar natural convection from a horizontal cylinder with multiple equally spaced high conductivity permeable fins on its outer surface was investigated numerically. The effect of several combinations of number of fins and fin height on the average Nusselt number was studied over a wide range of Rayleigh number. Permeable fins provided much higher heat transfer rates compared to the more traditional solid fins for a similar cylinder configuration. The ratio between the permeable to solid Nusselt numbers increased with Rayleigh number, number of fins, and fin height. This ratio was as high as 8.4 at Rayleigh number of 106, non-dimensional fin height of 2.0, and with 11 equally spaced fins. The use of permeable fins is very advantageous when high heat transfer rates are needed such as in today’s high power density electronic components.


2009 ◽  
Vol 132 (1) ◽  
Author(s):  
V. V. Sobha ◽  
R. Y. Vasudeva ◽  
K. Ramakrishna ◽  
K. Hema Latha

Thermal dispersion due to local flows is significant in heat transfer with forced convection in porous media. The effects of parametrized melting (M), thermal dispersion (D), inertia (F), and mixed convection (Ra/Pe) on the velocity distribution, temperature, and Nusselt number on non-Darcy, mixed convective heat transfer from an infinite vertical plate embedded in a saturated porous medium are examined. It is observed that the Nusselt number decreases with increase in melting parameter and increases with increase in thermal dispersion.


1988 ◽  
Vol 110 (1) ◽  
pp. 109-115 ◽  
Author(s):  
E. H. Bishop

An experimental study was performed of the heat transfer by natural convection of helium between horizontal isothermal concentric cylinders at cryogenic temperatures. Time-averaged temperature profiles at various locations in the annulus and overall heat transfer rates were measured as the Rayleigh number was varied from 6 × 106 to 2 × 109 and the expansion number from 0.20 to 1.0 for a constant Prandtl number of 0.688 and diameter ratio of 3.36. It was found that the heat transfer rate depends on the magnitude of the expansion number as well as on the magnitude of the Rayleigh number. With gas properties evaluated at a volume-weighted reference temperature, a correlation equation is presented that correlates the heat transfer data with maximum deviations of −8.2 and +8.5 percent. The results of this study are compared with previously published studies of other investigators.


1983 ◽  
Vol 105 (1) ◽  
pp. 124-129 ◽  
Author(s):  
A. Bejan ◽  
R. Anderson

This paper examines the interaction by natural convection between a fluid-saturated porous medium and a fluid reservoir separated by a vertical impermeable partition. The two fluid systems are maintained at different temperatures. The analysis is simplified by assuming Pr > > 1 in the fluid reservoir. It is shown analytically that the flow and temperature fields in the boundary layer regime consist of two fluid layers in counterflow. The interface temperature is shown to increase monotonically with altitude. The important dimensionless group which governs the fluid mechanics is B = (kRaK1/2) / (k′Ra1/4), where k, k′, RaK and Ra are, respectively, the porous medium conductivity, reservoir fluid conductivity, Darcy-modified Rayleigh number based on partition height, and the reservoir Rayleigh number based on partition height. The effect of parameter, B, on the flow, temperature, and heat transfer is documented in the range 0 < B < ∞.


2017 ◽  
Vol 18 (2) ◽  
pp. 196-211 ◽  
Author(s):  
Mehdi Ahmadi

In this paper, to achievement the effect of increase number of heating components arrangement on the rate of heat transfer of natural convection, that others have been less noticed. Therefore, in each stage increase the number of heating components so much the space occupied by them remains constant. Then by calculating the amount of heat transfer in different Rayleigh number became clear that minify and distributing heating solid phase in the enclosure increases the total Nusselt number and heat transfer, One reason could be high intensity of fluid motion in corners and near walls of the enclosure. In the next section with the solid phases on the enclosure can be made porous media model. As the results showed an increase in average Rayleigh number, Nusselt number has increased. Also be seen in the lower Darcy numbers, speed of increase in Nusselt number with increase in average Rayleigh number is higher. It can be said that in enclosure by any number of solid pieces with certain Darcy number, with an increase in average Rayleigh number, circular flow inside the enclosure becomes more intense and isothermal lines near walls with constant temperature are so dense, that represents an increase in rate of heat transfer. Also by increasing the Darcy number, rate of heat transfer from the porous media has decreased, as regards that a large share of heat transfer in porous media is done by conduction, although increasing Darcy number increases heat transfer of natural convection but decrease a heat transfer of conduction, therefore decrease total of heat transfer.


2008 ◽  
Vol 273-276 ◽  
pp. 796-801
Author(s):  
L.B.Y. Aldabbagh ◽  
Mohsen Sharifpur ◽  
Mahdi Zamani

A set of experiments is done to study the phenomenon of free convection heat transfer from an isothermal vertical flat plate embedded in a saturated porous medium in steady state condition. The porous medium consisting of 0.8 cm spheres. The aspect ratio of the isothermal flat plate, H/W, is equal to 2. Where H is the height and W is the width of the vertical plate. The investigations were cared out for Darcy modified Rayleigh number between 100 and 500. The results indicate that heat transfer increases linearly with increasing the Darcy modified Rayleigh number. In addition, the present results are in good agreement with the higher-order boundary layer theory obtained by Cheng and Hsu [1].


Sign in / Sign up

Export Citation Format

Share Document