An Experimental Evaluation of the Hamrock and Dowson Minimum Film Thickness Equation for Fully Flooded EHD Point Contacts

1981 ◽  
Vol 103 (2) ◽  
pp. 284-294 ◽  
Author(s):  
K. A. Koye ◽  
W. O. Winer

Fifty-seven measurements of the minimum lubricant film thickness separating the elastohydrodynamically lubricated point contact of a steel crowned roller and a flat sapphire disk were made by an optical interferometry technique. The data collected were used to evaluate the Hamrock and Dowson minimum EHD film thickness model over a practical range of contact ellipticity ratio where the major axis of the contact ellipse is aligned both parallel and perpendicular to the direction of motion. A statistical analysis of the measured film thickness data showed that the experimental data averaged 30 percent greater film thickness than the Hamrock and Dowson model predicts.

Author(s):  
Yuchuan Liu ◽  
Q. Jane Wang ◽  
Dong Zhu

This study investigates the influences of coating material properties and coating thickness on lubricant film thickness based on a point-contact isothermal EHL model developed recently by the authors. The results present the trend of minimum film thickness variation as a function of coating thickness and elastic modulus under a wide range of working conditions. Numerical results indicates that the increase in minimum film thickness, Imax, and the corresponding optimal dimensionless coating thickness, H2, can be expressed in the following formulas: Imax=0.766M0.0248R20.0296L0.1379exp(−0.0245ln2L)H2=0.049M0.4557R2−0.1722L0.7611exp(−0.0504ln2M−0.0921ln2L) These formulas can be used to estimate the effect of a coating on EHL film thickness.


1974 ◽  
Vol 96 (3) ◽  
pp. 464-469 ◽  
Author(s):  
V. Turchina ◽  
D. M. Sanborn ◽  
W. O. Winer

Techniques using the infrared radiation emitted by a sliding EHD point contact to measure oil film and surface temperature are discussed. Temperature distributions in the EHD contact are presented for a naphthenic mineral oil at 1.04 × 109 N/m2 (150,000 psi) Hertz pressure and several sliding velocities. Film temperatures as high as 360 C are reported at locations near the points of minimum film thickness in the contact side lobes.


1991 ◽  
Vol 113 (4) ◽  
pp. 703-711 ◽  
Author(s):  
Kyung Hoon Kim ◽  
Farshid Sadeghi

A numerical solution to the problem of isothermal non-Newtonian elastohydrodynamic lubrication of rolling/sliding point contacts has been obtained. The multigrid technique is used to solve the simultaneous system of two-dimensional modified Reynolds and elasticity equations. The effects of various loads, speeds, and slide to roll ratios on the pressure distribution, film thickness, and friction force have been investigated. Results for the dimensionless load W = 4.6 × 10−6 and 1.1 × 10−6, and the dimensionless velocity U = 3 × 10−10 and 3 × 10−11 are presented. The results indicate that slide to roll ratio has negligible effect on the minimum film thickness, however, it significantly reduces the pressure spike.


1987 ◽  
Vol 109 (3) ◽  
pp. 437-443 ◽  
Author(s):  
A. A. Lubrecht ◽  
W. E. ten Napel ◽  
R. Bosma

Detailed and accurate film thickness and pressure profiles have been calculated for point contacts at moderate and high loads, using a multigrid method. The influence of the compressibility of the lubricant and of the number of nodal points on the calculated minimum film thickness and maximum spike pressure have been examined. The required computing time is two orders of magnitude less, compared with the calculations using “classical” iterative methods.


Author(s):  
Eduardo de la Guerra Ochoa ◽  
Javier Echávarri Otero ◽  
Enrique Chacón Tanarro ◽  
Benito del Río López

This article presents a thermal resistances-based approach for solving the thermal-elastohydrodynamic lubrication problem in point contact, taking the lubricant rheology into account. The friction coefficient in the contact is estimated, along with the distribution of both film thickness and temperature. A commercial tribometer is used in order to measure the friction coefficient at a ball-on-disc point contact lubricated with a polyalphaolefin base. These data and other experimental results available in the bibliography are compared to those obtained by using the proposed methodology, and thermal effects are analysed. The new approach shows good accuracy for predicting the friction coefficient and requires less computational cost than full thermal-elastohydrodynamic simulations.


Lubricants ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 80 ◽  
Author(s):  
Petr Sperka ◽  
Ivan Krupka ◽  
Martin Hartl

Prediction of minimum film thickness is often used in practice for calculation of film parameter to design machine operation in full film regime. It was reported several times that majority of prediction formulas cannot match experimental data in terms of minimum film thickness. These standard prediction formulas give almost constant ratio between central and minimum film thickness while numerical calculations show ratio which spans from 1 to more than 3 depending on M and L parameters. In this paper, an analytical formula of this ratio is presented for lubricants with various pressure–viscosity coefficients. The analytical formula is compared with optical interferometry measurements and differences are discussed. It allows better prediction, compared to standard formulas, of minimum film thickness for wide range of M and L parameters.


1982 ◽  
Vol 104 (3) ◽  
pp. 365-375 ◽  
Author(s):  
C. Cusano ◽  
L. D. Wedeven

The effects of artificially-produced dents and grooves on the elastohydrodynamic (EHD) film thickness profile in a sliding point contact are investigated by means of optical interferometry. The defects, formed on the surface of a highly polished ball, are held stationary at various locations within and in the vicinity of the contact region while the disk is rotating. It is shown that the defects, having a geometry similar to what can be expected in practice, can dramatically change the film thickness which exists when no defects are present in or near the contact. This change in film thickness is mainly a function of the position of the defects in the inlet region, the geometry of the defects, the orientation of the defects in the case of grooves, and the depth of the defect relative to the central film thickness.


2021 ◽  
Author(s):  
Wassim Habchi ◽  
Philippe Vergne

Abstract The current work presents a quantitative approach for the prediction of minimum film thickness in elastohydrodynamic lubricated (EHL) circular contacts. In contrast to central film thickness, minimum film thickness can be hard to accurately measure, and it is usually poorly estimated by classical analytical film thickness formulae. For this, an advanced finite-element-based numerical model is used to quantify variations of the central-to-minimum film thickness ratio with operating conditions, under isothermal Newtonian pure-rolling conditions. An ensuing analytical expression is then derived and compared to classical film thickness formulae and to more recent similar expressions. The comparisons confirmed the inability of the former to predict the minimum film thickness, and the limitations of the latter, which tend to overestimate the ratio of central-to-minimum film thickness. The proposed approach is validated against numerical results as well as experimental data from the literature, revealing an excellent agreement with both. This framework can be used to predict minimum film thickness in circular elastohydrodynamic contacts from knowledge of central film thickness, which can be either accurately measured or rather well estimated using classical film thickness formulae.


Sign in / Sign up

Export Citation Format

Share Document