Design and Analysis of a High Pressure Apparatus

1980 ◽  
Vol 102 (3) ◽  
pp. 633-640
Author(s):  
K. C. Rolle ◽  
J. N. Crisp ◽  
A. N. Palazotto

In the determination of equilibrium phase diagrams, i.e., pressure volume-temperature relations for lubricants at pressures up to 2800 MPa and temperatures of 378K, one must carry out a highly sophisticated design of a high pressure apparatus. In 1935 Bridgman designed a piston-displacement device and measured the compressibility of numerous materials at high pressures. However, in order to obtain accurate equilibrium phase diagrams for lubricants, Bridgman’s relatively crude analysis must be considerably refined. The authors have extended this original design using finite element techniques to accurately correct pertinent measurements which are in turn incorporated into the expressions used in determining the pressure-volume temperature relations of lubricants.

1989 ◽  
Vol 148 ◽  
Author(s):  
G. P. Schwartz

ABSTRACTThe phases which result from the oxidation of III-V compound semiconductors can be predicted from a knowledge of the condensed phase portion of their equilibrium phase diagrams. Examples will be shown for arsenides, antimonides, and phosphides. Use of these diagrams explicitly presumes equilibrium growth conditions, and that assumption often fails. In such cases kinetic rather than thermodynamic factors dominate the determination of the observed phases. Examples of this phenomenon for anodic oxidation will be presented. Recent interest in high pressure oxidation conditions as a means of alleviating kinetic limitations will be discussed for InP. The phase diagrams can also be used to predict interfacial reactions under certain conditions and data for GaAs will serve to illustrate this point.


1990 ◽  
Vol 45 (5) ◽  
pp. 598-602 ◽  
Author(s):  
Klaus-Jürgen Range ◽  
Helmut Meister ◽  
Ulrich Klement

The polymorphism of CeVO4 was investigated at high pressures and temperatures in a Belttype high-pressure apparatus. In addition to the normal-pressure modification CeVO4— I with zircon-type structure two high-pressure modifications have been found, viz. monazite-type CeVO4—II and scheelite-type CeVO4—III. CeVO4—II is stable between 1 bar and 30 kbar at 1300 °C. Its region of existence decreases rapidly at lower temperatures. From the observed p,T-relations for the I-II and I-III transformations a triple point CeVO4—I,II,III at about 27 kbar, 500 °C can be estimated. For kinetic reasons, however, the experimental determination of phase relations becomes difficult at temperatures below 600 °C.The crystal structures of CeVO4— I and —II have been refined from single-crystal data. Crystallographic data for the three modifications are given and discussed (CeVO4—I: I 41/amd, a = 7.383(1)Å, c = 6.485(1)Å, Z = 4; CeVO4—II: P21/n, a = 7.003(1)Å, b = 7.227(1)Å, c = 6.685(1)Å, β = 105.13(1)°, Z = 4; CeVO4—III: I 41/α, a = 5.1645(2)Å, c = 11.8482(7)Å, Z = 4).


SPE Journal ◽  
2019 ◽  
Vol 24 (06) ◽  
pp. 2504-2525 ◽  
Author(s):  
Jing Li ◽  
Keliu Wu ◽  
Zhangxin Chen ◽  
Kun Wang ◽  
Jia Luo ◽  
...  

Summary An excess adsorption amount obtained in experiments is always determined by mass balance with a void volume measured by helium (He) –expansion tests. However, He, with a small kinetic diameter, can penetrate into narrow pores in porous media that are inaccessible to adsorbate gases [e.g., methane (CH4)]. Thus, the actual accessible volume for a specific adsorbate is always overestimated by an He–based void volume; such overestimation directly leads to errors in the determination of excess isotherms in the laboratory, such as “negative isotherms” for gas adsorption at high pressures, which further affects an accurate description of total gas in place (GIP) for shale–gas reservoirs. In this work, the mass balance for determining the adsorbed amount is rewritten, and two particular concepts, an “apparent excess adsorption” and an “actual excess adsorption,” are considered. Apparent adsorption is directly determined by an He–based volume, corresponding to the traditional treatment in experimental conditions, whereas actual adsorption is determined by an adsorbate–accessible volume, where pore–wall potential is always nonpositive (i.e., an attractive molecule/pore–wall interaction). Results show the following: The apparent excess isotherm determined by the He–based volume gradually becomes negative at high pressures, but the actual one determined by the adsorbate–accessible volume always remains positive.The negative adsorption phenomenon in the apparent excess isotherm is a result of the overestimation in the adsorbate–accessible volume, and a larger overestimation leads to an earlier appearance of this negative adsorption.The positive amount in the actual excess isotherm indicates that the adsorbed phase is always denser than the bulk gas because of the molecule/pore–wall attraction aiding the compression of the adsorbed molecules. Practically, an overestimation in pore volume (PV) is only 3.74% for our studied sample, but it leads to an underestimation reaching up to 22.1% in the actual excess amount at geologic conditions (i.e., approximately 47 MPa and approximately 384 K). Such an overestimation in PV also underestimates the proportions of the adsorbed–gas amount to the free–gas amount and to the total GIP. Therefore, our present work underlines the importance of a void volume in the determination of adsorption isotherms; moreover, we establish a path for a more–accurate evaluation of gas storage in geologic shale reservoirs with high pressure.


Minerals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 344
Author(s):  
William A. Bassett

The late Taro Takahashi earned a particularly well-deserved reputation for his research at Lamont Geological Observatory on carbon dioxide and its transfer between the atmosphere and the oceans. However, his accomplishments in Mineral Physics, the field embracing the high-pressure–high-temperature properties of materials, has received less attention in spite of his major contributions to this emerging field focused on the interiors of Earth and other planets. In 1963, I was thrilled when he was offered a faculty position in the Geology Department at the University of Rochester, where I had recently joined the faculty. Taro and I worked together for the next 10 years with our talented students exploring the blossoming field just becoming known as Mineral Physics, the name introduced by Orson Anderson and Ed Schreiber, who were also engaged in measuring physical properties at high pressures and temperatures. While their specialty was ultrasonic velocities in minerals subjected to high pressures and temperatures, ours was the determination of crystal structures, compressibilities, and densities of such minerals as iron, its alloys, and silicate minerals, especially those synthesized at high-pressure, such as silicates with the spinel structure. These were materials expected to be found in the Earth’s interior and could therefore provide background for the interpretation of geophysical observations.


Author(s):  
D. E. Lea

The columnar theory developed by Jaffé to account for the recombination of ions in alpha particle tracks is extended to beta rays by taking account of the clusters of secondary ionisation. Reasonable agreement is obtained with experiment. Recombination in proton tracks produced in hydrogen by neutrons is shown to be in agreement with the columnar theory, but in the case of nitrogen nuclear tracks in nitrogen the recombination is only a hundredth of that predicted by the theory. An explanation of this effect is advanced, and it is suggested that recombination is likely to be abnormally small for all heavy nuclei of velocities not exceeding 5 × 108 cm. per sec.An experimental determination of the coefficient of recombination of ions in nitrogen and hydrogen at pressures of 20, 40 and 90 atmospheres is reported.My thanks are due to Dr Chadwick for interest in this work, and to Dr Gray and Dr Tarrant for advice on the experimental technique of high pressure ionisation measurements. I am indebted also to the Department of Scientific and Industrial Research for a maintenance grant.


2019 ◽  
Vol 52 (6) ◽  
pp. 1378-1384
Author(s):  
Sergey Gromilov ◽  
Anatoly Chepurov ◽  
Valeri Sonin ◽  
Egor Zhimulev ◽  
Aleksandr Sukhikh ◽  
...  

The Fe–C system, which is widely used to grow commercial high-pressure–high-temperature diamond monocrystals, is rather complicated due to the formation of carbides. The carbide Fe3C is a normal run product, but the pressure at which Fe7C3 carbide becomes stable is a subject of discussion. This paper demonstrates the synthesis of Fe7C3 carbide and its detailed study using single-crystal and powder X-ray diffraction, as well as electron probe micro-analysis and scanning electron microscopy. The experiments were performed using a multiple-anvil high-pressure apparatus of `split-sphere' (BARS) type at a pressure of 5.5 GPa and a temperature of 1623 K. Our results show that in the Fe–C system, in addition to diamond, a phase that corresponds to the Fe7C3 carbide was synthesized. This means that both carbides (Fe7C3 and Fe3C) are stable at 5.5 GPa. Two crystal phases are described, Fe14C6 and Fe28C12−x . Fe14C6 is based on the well known rhombic structure of Fe7C3, while Fe28C12−x has a different packing order of Fe6C polyhedrons. The results obtained in this study should be taken into account when synthesizing and growing diamond at high pressures and temperatures in metal–carbon systems with a high iron content, as well as when conducting experimental studies on the synthesis of diamond directly from carbide.


2008 ◽  
Vol 403 ◽  
pp. 77-80 ◽  
Author(s):  
Peter Kroll

A combination of first-principle and thermochemical calculations is applied to compute the phase diagrams of rhenium-nitrogen and of ruthenium-nitrogen at elevated temperature and high pressure. We augment total energy calculations with our approach to treat the nitrogen fugacity at high pressures. We predict a sequential nitridation of Re at high-pressure/high-temperature conditions. At 3000 K, ReN will form from Re and nitrogen at about 32 GPa. A ReN2 with CoSb2-type structure may be achieved at pressures exceeding 50 GPa at this temperature. Marcasite-type RuN2 will be attainable at 3000 K at pressures above 30 GPa by reacting Ru with nitrogen.


2006 ◽  
Vol 62 (6) ◽  
pp. 1019-1024 ◽  
Author(s):  
David Santamaría-Pérez ◽  
Julien Haines ◽  
Ulises Amador ◽  
Emilio Morán ◽  
Angel Vegas

As in SiO2 which, at high pressures, undergoes the α-quartz → stishovite transition, GaAsO4 transforms into a dirutile structure at 9 GPa and 1173 K. In 2002, a new GaAsO4 polymorph was found by quenching the compound from 6 GPa and 1273 K to ambient conditions. The powder diagram was indexed on the basis of a hexagonal cell (a = 8.2033, c = 4.3941 Å, V = 256.08 Å3), but the structure did not correspond to any known structure of other AXO4 compounds. We report here the ab initio crystal structure determination of this hexagonal polymorph from powder data. The new phase is isostructural to β-MnSb2O6 and it can be described as a lacunary derivative of NiAs with half the octahedral sites being vacant, but it also contains fragments of the rutile-like structure.


Sign in / Sign up

Export Citation Format

Share Document