Energy Efficient Cam-Follower Systems

1983 ◽  
Vol 105 (4) ◽  
pp. 681-685 ◽  
Author(s):  
F. Freudenstein ◽  
M. Mayourian ◽  
E. R. Maki

The energy loss in cam-follower systems due to friction between moving parts can be a significant contributor to the power loss in machinery. Considering the total number of cam-operated machines in manufacturing and other operations, the energy savings obtainable by improving the efficiency of the average cam-follower system by even a small percentage would be significant. In this investigation a new rating factor—an energy-loss coefficient proportional to the energy loss at the cam-follower interface—has been defined and evaluated. The rating factor relates to energy efficiency in a manner analogous to the way in which the well-known rating factors for velocity, acceleration, and shock relate to the kinematic characteristics of the cam-follower system. Two cam-follower configurations have been considered: 1) a follower motion governed by both cam and return spring, and 2) a follower positively driven by the cam. In both cases it was found that cam curves with identical rise and rise times can differ substantially in energy efficiency thereby demonstrating the significance of an energy-optimization strategy in the design of cam-follower systems. The nature of the functional dependence of the energy loss on system parameters has been identified and a minimum energy-loss limit established.

2014 ◽  
Vol 548-549 ◽  
pp. 1815-1819 ◽  
Author(s):  
Xiao Chun Qin ◽  
She Gang Shao ◽  
Yi Shen

Green lighting technology has the advantages of energy efficiency, friendly environment, safety and comfort. Based on the introduction of green lighting technology, taken the Mt. Lushan West Sea tourist highway service as the case study, we analyzed light guide illumination, the optimum use of natural light and energy efficient lighting respectively from the aspects of technical characteristics and the specific highway service application. We finally made the economic analysis in the energy savings of green lights in the highway service, and the result showed that through the use of green lighting systems Mt. Lushan West Sea tourist highway service could save electricity and reduce operating costs 134,700 Yuan per year.


2012 ◽  
Vol 3 (1) ◽  
pp. 11-17 ◽  
Author(s):  
J. Frijns ◽  
R. Middleton ◽  
C. Uijterlinde ◽  
G. Wheale

Energy costs and climate change challenges the water industry to improve their energy efficiency. The number of examples of energy measures in water production and treatment is growing rapidly. In this paper, best practices of energy efficiency from the European water industry are presented with the objective of learning from each other. The best practices are collected within the framework of the Global Water Research Coalition's attempt to devise a global compendium ‘Best practices in the energy efficient design and operation of water industry assets’. The case studies in the compendium show significant energy savings in all parts of the water cycle. Examples with potential include the improved operational set up of pumping design, on line aeration control, and energy-efficient bubble aerators and sludge belt thickeners. Next to optimising energy efficiency across the water cycle, there are also opportunities for energy generation. Promising practices include biogas production from sludge (co)digestion and hydraulic energy generation from micro-turbines.


2018 ◽  
pp. 5-15
Author(s):  
Lyudmila Swistun ◽  
Taina Zavora ◽  
Yuliia Khudolii

The main goal of the study is to analyse the residential real estate market in Ukraine from the point of view of the need and the possibility of increasing its energy efficiency. Also, it aims to justify effective financial and credit mechanisms for ensuring measures to improve the thermal protection properties of residential and non- residential real estate, in particular by introducing energy efficiency development projects. With this research we investigated Ukraine's housing stock and utility tariffs and concluded that a beneficial strategy to be applied in Ukraine is the energy-efficient retrofit of real estate. This is one of the most effective ways to re-profile unclaimed real estate units in the existing state or to reconstruct inefficiently used buildings. Also, we reviewed selected methods of energy efficient residential real estate development and mechanisms of financing energy- efficient renovation of real estate used in the EU. And, in our view, the next step of the Ukraine in the direction of improving the energy efficiency of housing should be the effective operation of a dedicated/specific energy efficiency fund to ensure stable financing of housing modernization projects, which will allow for a comprehensive renovation of buildings and lead to significant annual energy savings in this end-use sector.


Electronics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1678
Author(s):  
Paolo Ciancarini ◽  
Shokhista Ergasheva ◽  
Zamira Kholmatova ◽  
Artem Kruglov ◽  
Giancarlo Succi ◽  
...  

With the growing need for software-driven devices in modern life, the pervasive necessity of energy efficiency is also rising dramatically. Considering the importance of energy-efficient software in the IT-sphere, many companies started to search and uncover ways for minimizing energy loss. We study the software development process in terms of energy consumption. This depends on various factors that have to be monitored continuously. In this paper, we propose the Innometrics framework for monitoring the software development process and analyzing the profiles of energy consumption by user devices. The motivating idea of the project is to provide crucial insights and to clarify which development activities are the main drivers behind the energy consumption.


Author(s):  
Wente Pan ◽  
Hongyuan Mei

In the past decade, Chinese urban areas have seen rapid development, and rural areas are becoming the next construction hotspot. The development of rural buildings in China has lagged behind urban development, and there is a lack of energy-efficient rural buildings. Rural houses in severe cold regions have the characteristics of large energy exchange, a long heating cycle, and low construction costs. Energy consumption is a crucial issue for rural houses in severe cold regions. How to balance the energy efficiency and building cost become a crucial problem. To solve this problem, we investigate the energy consumption of rural housing in cold regions, using Longquan Village in Heilongjiang Province, northeast China, as a case study. A low-energy design framework is established that considers the spatial layout, building type, enclosure system, and heating system. With the support of project funds, a demonstration house is constructed, and the energy savings performance of the building is investigated during the heating period. The results indicate that the energy savings rate of the demonstration house is 66%. The demonstration building enables local residents to learn construction methods for low-energy houses and promotes energy efficiency.


Resources ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 49 ◽  
Author(s):  
Jens Teubler ◽  
Sebastian Kiefer ◽  
Christa Liedtke

The long-term transition towards a low-carbon transport sector is a key strategy in Europe. This includes the replacement of fossil fuels, modal shifts towards public transport as well as higher energy efficiency in the transport sector overall. While these energy savings are likely to reduce the direct greenhouse gas emissions of transport, they also require the production of new and different vehicles. This study analyses in detail whether final energy savings in the transport sector also induce savings for material resources from nature if the production of future vehicles is considered. The results for 28 member states in 2030 indicate that energy efficiency in the transport sector leads to lower carbon emissions as well as resource use savings. However, energy-efficient transport sectors can have a significant impact on the demand for metals in Europe. An additional annual demand for 28.4 Mt of metal ores was calculated from the personal transport sector in 2030 alone. The additional metal ores from semiprecious metals (e.g., copper) amount to 12.0 Mt, from precious metals (e.g., gold) to 9.1 Mt and from other metals (e.g., lithium) to 11.7 Mt, with small savings for ferrous metal ores (−4.6 Mt).


2016 ◽  
Vol 78 (3-2) ◽  
Author(s):  
Muhammad Zakwan Zaine ◽  
Mohd. Faris Mustafa ◽  
Onn Hassan ◽  
Kamarul Asri Ibrahim ◽  
Norazana Ibrahim ◽  
...  

Energy savings is a major challenge in distillation operations. However, there is still one problem, which is how do we improve the energy efficiency of the existing distillation column systems without major modifications. Recently, a new energy efficient distillation columns methodology that will be able to improve energy efficiency of the existing separation systems without having major modifications has been developed. Therefore, the objective of this paper is to present a new improvement of the existing methodology by designing an optimal sequence of energy efficient distillation columns using a driving force method. Accordingly, the methodology is divided into four hierarchical sequential stages: i) existing sequence energy analysis, ii) optimal sequence determination, iii) optimal sequence energy analysis, and iv) energy comparison and economic analysis. The capability of this methodology is tested in designing an optimal synthesis of energy efficient distillation columns sequence of an aromatics separation unit. The existing aromatics separation unit consists of six compounds (Methylcyclopentane (MCP), Benzene, Methylcyclohexane (MCH), Toluene, m-Xylene and o-Xylene) with five direct sequence distillation columns being simulated using a simple and reliable short-cut method and rigorously tested within an Aspen HYSYS® simulation environment. The energy and economic analyses show that the optimal sequence determined by the driving force method has a better energy reduction with a total of 6.78% energy savings and a return of investment of 3.10 with a payback period of 4 months. It can be concluded that, the sequence determined by the driving force method is not only capable in reducing energy consumption, but also has a better economic cost for an aromatic separation unit


2021 ◽  
Vol 2042 (1) ◽  
pp. 012182
Author(s):  
B Marshall ◽  
J Felkner ◽  
Z Nagy

Abstract This research project compared a standard vapor compression system and a standard desiccant dehumidification system with heat wheel to determine if there was some potential energy savings for “shoulder season” hours in Austin Texas. “Shoulder season” hours as defined in the paper are hours during which the dry bulb temperature falls within the American Society of Heating Refrigeration and Air Conditioning Engineers (ASHRAE) comfort bound but the humidity is above the comfortable humidity point. These hours are normally addressed with vapor compression systems which dehumidify by cooling the air under the comfort setpoint to dehumidify, which is wasteful of energy. The study found that for these shoulder season hours a desiccant dehumidification system was around 4.5 times more energy efficient at reaching comfort setpoints if free heating was used for drying the desiccant.


Inventions ◽  
2020 ◽  
Vol 5 (2) ◽  
pp. 20
Author(s):  
João Fong ◽  
Fernando J. T. E. Ferreira ◽  
André M. Silva ◽  
Aníbal T. de Almeida

Recognition of the energy savings potential in motor driven systems has led to the development of energy efficiency testing and classification standards for motors and end-use equipment (e.g., pumps and fans) and the implementation of minimum energy performance regulations targeting them worldwide. However, these standards and regulations have been limited to components, disregarding the interaction between them. The energy savings achievable by addressing and improving the entire system are potentially much higher in relation to those achievable when considering individual components. Recently, an effort to develop standards in this regard was carried out by standardization bodies (IEC and ISO) leading to the publication of the IEC61800-9 Power Drive System standard series. The paper, in its first part, describes recent evolutions in electric motor energy-efficiency standards and in the implementation of related regulations worldwide. In the second part of the paper, using the latest energy efficiency test and classification standards, a comparative analysis of different energy-efficient motor technologies is presented. Using results from laboratory tests combined with data provided by manufacturers, different power drive systems are compared considering different operating points in two typical pumping systems. Estimated economic savings from a total cost of ownership perspective are presented.


Buildings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 356
Author(s):  
Fujen Wang ◽  
Kusnandar ◽  
Hungwen Lin ◽  
Minghua Tsai

With the cost of energy rising, the value of conservation grows. Interest in energy efficiency could be a sound investment or a necessary public policy. Heat pump systems provide economical alternatives of recovering heat from different sources for use in various applications. The objective of this study is to present the strategic approach on the energy efficient analysis of the water heating system retrofitted by applying a heat pump system in the dormitory of a university. Energy savings were determined by comparing field measurements of water consumption, water temperature and power consumption of the overall system before (electric resistance heating system) and after (heat pump heating system) the implementation of this project. Furthermore, the building energy simulation code (eQuest) has been applied to verify and predict the long-term energy consumption for both water heating systems. The results from energy modelling revealed the good agreement for energy simulation and field measurement data and the improvement of energy efficiency and energy savings could be achieved satisfactorily by retrofitting of a heat pump system. The energy conversion efficiency of hot water for energy consumption at 0.63 (Mcal/Mcal) could be achieved after the application of heat pump water heating system. It also presented the annual saving about USD 20,000 (NTD 600,000) for the dorm by using a heat pump heating system under the electrical billing rate of Taiwan.


Sign in / Sign up

Export Citation Format

Share Document