Energy efficiency in the European water industry: learning from best practices

2012 ◽  
Vol 3 (1) ◽  
pp. 11-17 ◽  
Author(s):  
J. Frijns ◽  
R. Middleton ◽  
C. Uijterlinde ◽  
G. Wheale

Energy costs and climate change challenges the water industry to improve their energy efficiency. The number of examples of energy measures in water production and treatment is growing rapidly. In this paper, best practices of energy efficiency from the European water industry are presented with the objective of learning from each other. The best practices are collected within the framework of the Global Water Research Coalition's attempt to devise a global compendium ‘Best practices in the energy efficient design and operation of water industry assets’. The case studies in the compendium show significant energy savings in all parts of the water cycle. Examples with potential include the improved operational set up of pumping design, on line aeration control, and energy-efficient bubble aerators and sludge belt thickeners. Next to optimising energy efficiency across the water cycle, there are also opportunities for energy generation. Promising practices include biogas production from sludge (co)digestion and hydraulic energy generation from micro-turbines.

2011 ◽  
Vol 6 (2) ◽  
Author(s):  
Malcolm Brandt ◽  
Roger Middleton ◽  
Gordon Wheale ◽  
Frans Schulting

After manpower, energy is the highest operating cost item for most water and wastewater companies. Over the last decade, energy consumption by the sector has increased considerably as a consequence of the implementation of new technologies to meet new potable water and effluent treatment quality standards. The price of energy has also increased substantially in the same period. These increases will be compounded by the need to meet future changes to regulations and standards that will require additional energy intensive processes to achieve more exacting requirements. High energy consumption will affect the water industry world wide and is inextricably linked to the issue of Climate Change. This international research project has focused on identifying current energy efficient best practices and technologies in the efficient design and operation of water industry assets for the whole water cycle from abstraction to discharge, including water treatment and distribution, wastewater conveyance and treatment; water reuse; sludge treatment and disposal and water conservation. Opportunities have also been identified for hydraulic energy recovery from turbines and generation from waste and sludge through CHP technology. The study output is a Compendium of global best practices covering the water cycle matrix and includes variations between regions and continents, large urban and small rural systems and complex high and simple low technical solutions. International case studies are used to illustrate best practices. On behalf of Global Water Research Coalition (GWRC) partners world-wide as represented by four Continental Coordinators in the US, Europe, Singapore and Australasia, and South Africa, the project was managed by UK Water Industry Research (UKWIR). This presentation will give the background to the project and use case studies to illustrate the study findings and future opportunities to help deliver both incremental improvements in energy efficiency through optimisation of existing assets and operations and more substantial improvements in energy efficiency from the adoption of novel but proven technologies.


2010 ◽  
Vol 14 (3) ◽  
pp. 613-623 ◽  
Author(s):  
Dubravka Jelic ◽  
Dusan Gordic ◽  
Milun Babic ◽  
Davor Koncalovic ◽  
Vanja Sustersic

Until recent times, energy management practices primarily consisted in replacing inefficient equipment and then using any number of methods to estimate obtained savings. Experience shows that positive effects of energy efficient improvements were decreased over time. There have been significant efforts over the last decade to define appropriate standards and best practices and implement the consistent energy management system to increase and maintain the energy savings. The knowledge gained from thousands of energy efficient projects is driving a transition from traditional tactical practice (one-time "build and forget" projects) to energy management strategies proposed and endorsed by a number of international organizations. The current status of internationally developed energy management standards, including an analysis of their shared features and differences is presented in this paper. The purpose of the analysis is to describe the current state of ?best practices? for this emerging area of energy efficiency policymaking in order to study the possibility of implementation of energy management standards in Serbia and to estimate the effects and the potential for energy saving that would be made by its implementation.


1983 ◽  
Vol 105 (4) ◽  
pp. 681-685 ◽  
Author(s):  
F. Freudenstein ◽  
M. Mayourian ◽  
E. R. Maki

The energy loss in cam-follower systems due to friction between moving parts can be a significant contributor to the power loss in machinery. Considering the total number of cam-operated machines in manufacturing and other operations, the energy savings obtainable by improving the efficiency of the average cam-follower system by even a small percentage would be significant. In this investigation a new rating factor—an energy-loss coefficient proportional to the energy loss at the cam-follower interface—has been defined and evaluated. The rating factor relates to energy efficiency in a manner analogous to the way in which the well-known rating factors for velocity, acceleration, and shock relate to the kinematic characteristics of the cam-follower system. Two cam-follower configurations have been considered: 1) a follower motion governed by both cam and return spring, and 2) a follower positively driven by the cam. In both cases it was found that cam curves with identical rise and rise times can differ substantially in energy efficiency thereby demonstrating the significance of an energy-optimization strategy in the design of cam-follower systems. The nature of the functional dependence of the energy loss on system parameters has been identified and a minimum energy-loss limit established.


2020 ◽  
Vol 81 (5) ◽  
pp. 876-890
Author(s):  
John N. Zvimba ◽  
Eustina V. Musvoto

Abstract About 55% of energy used in the South African water cycle is for wastewater treatment, with the bulk of this energy associated with aeration in biological processes. However, up to 15% of wastewater energy demand can be offset by energy generation from sludge (power and/or combined heat and power), while best practices adoption can deliver energy efficiency gains of between 5% and 25% in the water cycle. Advanced process modelling and simulation has been applied in this study as a tool to evaluate optimal process and aeration control strategies. This study further applied advanced modelling to investigate and predict the potential energy consumption and consumption cost pattern by the South African wastewater sector resulting from implementation of optimal process and aeration energy use reduction strategies in support of sustainable municipal wastewater management. Aeration energy consumption and cost savings of 9–45% were demonstrated to be achievable through implementation of energy conservation measures without compromising final effluent regulatory compliance. The study further provided significant potential future energy savings as high as 50% and 78% through implementation of simple and complex aeration energy conservation measures respectively. Generally, the model-predicted energy savings suggest that adoption of energy efficiency should be coupled with electricity generation from sludge in order to achieve maximum energy consumption and cost savings within the South African wastewater services sector.


2014 ◽  
Vol 548-549 ◽  
pp. 1815-1819 ◽  
Author(s):  
Xiao Chun Qin ◽  
She Gang Shao ◽  
Yi Shen

Green lighting technology has the advantages of energy efficiency, friendly environment, safety and comfort. Based on the introduction of green lighting technology, taken the Mt. Lushan West Sea tourist highway service as the case study, we analyzed light guide illumination, the optimum use of natural light and energy efficient lighting respectively from the aspects of technical characteristics and the specific highway service application. We finally made the economic analysis in the energy savings of green lights in the highway service, and the result showed that through the use of green lighting systems Mt. Lushan West Sea tourist highway service could save electricity and reduce operating costs 134,700 Yuan per year.


2018 ◽  
pp. 5-15
Author(s):  
Lyudmila Swistun ◽  
Taina Zavora ◽  
Yuliia Khudolii

The main goal of the study is to analyse the residential real estate market in Ukraine from the point of view of the need and the possibility of increasing its energy efficiency. Also, it aims to justify effective financial and credit mechanisms for ensuring measures to improve the thermal protection properties of residential and non- residential real estate, in particular by introducing energy efficiency development projects. With this research we investigated Ukraine's housing stock and utility tariffs and concluded that a beneficial strategy to be applied in Ukraine is the energy-efficient retrofit of real estate. This is one of the most effective ways to re-profile unclaimed real estate units in the existing state or to reconstruct inefficiently used buildings. Also, we reviewed selected methods of energy efficient residential real estate development and mechanisms of financing energy- efficient renovation of real estate used in the EU. And, in our view, the next step of the Ukraine in the direction of improving the energy efficiency of housing should be the effective operation of a dedicated/specific energy efficiency fund to ensure stable financing of housing modernization projects, which will allow for a comprehensive renovation of buildings and lead to significant annual energy savings in this end-use sector.


Author(s):  
Wente Pan ◽  
Hongyuan Mei

In the past decade, Chinese urban areas have seen rapid development, and rural areas are becoming the next construction hotspot. The development of rural buildings in China has lagged behind urban development, and there is a lack of energy-efficient rural buildings. Rural houses in severe cold regions have the characteristics of large energy exchange, a long heating cycle, and low construction costs. Energy consumption is a crucial issue for rural houses in severe cold regions. How to balance the energy efficiency and building cost become a crucial problem. To solve this problem, we investigate the energy consumption of rural housing in cold regions, using Longquan Village in Heilongjiang Province, northeast China, as a case study. A low-energy design framework is established that considers the spatial layout, building type, enclosure system, and heating system. With the support of project funds, a demonstration house is constructed, and the energy savings performance of the building is investigated during the heating period. The results indicate that the energy savings rate of the demonstration house is 66%. The demonstration building enables local residents to learn construction methods for low-energy houses and promotes energy efficiency.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Eric Kwame Simpeh ◽  
Jon-Patrick George Pillay ◽  
Ruben Ndihokubwayo ◽  
Dorothy Julian Nalumu

PurposeHeating, ventilation and air-conditioning (HVAC) systems account for approximately half of all energy usage in the operational phase of a building's lifecycle. The disproportionate amount of energy usage in HVAC systems against other utilities within buildings has proved a huge cause for alarm, as this practice contributes significantly to global warming and climate change. This paper reviews the status and current trends of energy consumption associated with HVAC systems with the aim of interrogating energy efficiency practices for improving HVAC systems' consumption in buildings in the context of developing countries.Design/methodology/approachThe study relied predominantly on secondary data by analysing the relevant body of literature and proposing conceptual insights regarding best practices for improving the energy efficiency of HVAC systems in buildings. The systematic review of the literature (SLR) was aided by the PRISMA guiding principle. Content analysis technique was adopted to examine germane scholarly articles and finally grouped them into themes.FindingsBased on the SLR, measures for enhancing the energy efficiency of HVAC systems in buildings were classified based on economic considerations ranging from low-cost measures such as the cost of tuning the system, installing zonal control systems, adopting building integrated greenery systems and passive solar designs to major approaches such as HVAC smart technologies for energy management which have multi-year pay-back periods. Further, it was established that practices to improve energy efficiency in buildings range from integrated greening system into buildings to HVAC system which are human-centred and controlled to meet human modalities.Practical implicationsThere is a need to incorporate these energy efficiency practices into building regulations or codes so that built environment professionals would have a framework within which to design their buildings to be energy efficient. This energy efficient solution may serve as a prerequisite for newly constructed buildings.Originality/valueTo this end, the authors develop an integrated optimization conceptual framework mimicking energy efficiency options that may complement HVAC systems operations in buildings.


Resources ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 49 ◽  
Author(s):  
Jens Teubler ◽  
Sebastian Kiefer ◽  
Christa Liedtke

The long-term transition towards a low-carbon transport sector is a key strategy in Europe. This includes the replacement of fossil fuels, modal shifts towards public transport as well as higher energy efficiency in the transport sector overall. While these energy savings are likely to reduce the direct greenhouse gas emissions of transport, they also require the production of new and different vehicles. This study analyses in detail whether final energy savings in the transport sector also induce savings for material resources from nature if the production of future vehicles is considered. The results for 28 member states in 2030 indicate that energy efficiency in the transport sector leads to lower carbon emissions as well as resource use savings. However, energy-efficient transport sectors can have a significant impact on the demand for metals in Europe. An additional annual demand for 28.4 Mt of metal ores was calculated from the personal transport sector in 2030 alone. The additional metal ores from semiprecious metals (e.g., copper) amount to 12.0 Mt, from precious metals (e.g., gold) to 9.1 Mt and from other metals (e.g., lithium) to 11.7 Mt, with small savings for ferrous metal ores (−4.6 Mt).


Sign in / Sign up

Export Citation Format

Share Document