scholarly journals Metals for Fuels? The Raw Material Shift by Energy-Efficient Transport Systems in Europe

Resources ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 49 ◽  
Author(s):  
Jens Teubler ◽  
Sebastian Kiefer ◽  
Christa Liedtke

The long-term transition towards a low-carbon transport sector is a key strategy in Europe. This includes the replacement of fossil fuels, modal shifts towards public transport as well as higher energy efficiency in the transport sector overall. While these energy savings are likely to reduce the direct greenhouse gas emissions of transport, they also require the production of new and different vehicles. This study analyses in detail whether final energy savings in the transport sector also induce savings for material resources from nature if the production of future vehicles is considered. The results for 28 member states in 2030 indicate that energy efficiency in the transport sector leads to lower carbon emissions as well as resource use savings. However, energy-efficient transport sectors can have a significant impact on the demand for metals in Europe. An additional annual demand for 28.4 Mt of metal ores was calculated from the personal transport sector in 2030 alone. The additional metal ores from semiprecious metals (e.g., copper) amount to 12.0 Mt, from precious metals (e.g., gold) to 9.1 Mt and from other metals (e.g., lithium) to 11.7 Mt, with small savings for ferrous metal ores (−4.6 Mt).

1983 ◽  
Vol 105 (4) ◽  
pp. 681-685 ◽  
Author(s):  
F. Freudenstein ◽  
M. Mayourian ◽  
E. R. Maki

The energy loss in cam-follower systems due to friction between moving parts can be a significant contributor to the power loss in machinery. Considering the total number of cam-operated machines in manufacturing and other operations, the energy savings obtainable by improving the efficiency of the average cam-follower system by even a small percentage would be significant. In this investigation a new rating factor—an energy-loss coefficient proportional to the energy loss at the cam-follower interface—has been defined and evaluated. The rating factor relates to energy efficiency in a manner analogous to the way in which the well-known rating factors for velocity, acceleration, and shock relate to the kinematic characteristics of the cam-follower system. Two cam-follower configurations have been considered: 1) a follower motion governed by both cam and return spring, and 2) a follower positively driven by the cam. In both cases it was found that cam curves with identical rise and rise times can differ substantially in energy efficiency thereby demonstrating the significance of an energy-optimization strategy in the design of cam-follower systems. The nature of the functional dependence of the energy loss on system parameters has been identified and a minimum energy-loss limit established.


2014 ◽  
Vol 9 (1) ◽  
pp. 142-165
Author(s):  
Shree Raj Shakya

Development of low carbon electricity based mass transport is considered as one of the promising options for perusing the low carbon development (LCD) path in 21st century by the global communities. But long term economy-wide implications of such policy is very much country specifics citing their variations in the availability and tapping potential of indigenous clean energy resources, access to the clean technologies, affordability and acceptability of such technologies, and so on. This paper studies the economy-wide consequences of introducing different levels of electrified mass transport systems in Nepal on the long term basis. The study develops and uses a multi-sector, single region, recursive dynamic computable general equilibrium model of Nepal (Nepal-TRNSCGE) with technology level disaggregation in the transport and electricity sectors. The study indicates that under transport electrification scenarios consisting of 10% to 30% electrification of the transport sector as compared to the base case by 2050, the country would benefit economically with the value of cumulative undiscounted GDP increasing in the range of 2.6% to 3.1% and the value of cumulative undiscounted equivalent variation in income (household welfare) increasing in the range of 25.3% to 147.9% during 2005 to 2050. The policy would promote energy efficiency improvement and cleaner economic development with significant reduction in the energy intensity of GDP in the range of 3.1% to 4.1% and greenhouse gas intensity of GDP in the range of 4.7% to 7.1%. This highlights the potential role of low carbon electricity based transport in achieving the LCD path in the country. Introducing foreign direct investment would further increase GDP but reduce household welfare. DOI: http://dx.doi.org/10.3126/jie.v9i1.10679Journal of the Institute of Engineering, Vol. 9, No. 1, pp. 142–165


Author(s):  
Zhendong Liu ◽  
Mats Berg ◽  
Tohmmy Bustad

Improving energy efficiency and reducing CO2 emissions are becoming very essential worldwide. To encourage the development and application of energy-efficient and low-emission technologies and to increase people's awareness of energy-saving, many energy labelling systems are developed and utilized in most countries. Since energy labelling systems have a significant impact, more and more sectors are developing their energy labelling systems to have their products included. Globally, the transport sector consumes a great proportion of energy and is responsible for considerable CO2 emissions. Although rail vehicles have relatively high energy efficiency, a labelling system has not been developed in the railway sector, whereas other modes of transport have developed energy efficiency indicators or energy labelling systems. Therefore, it is necessary to develop an energy labelling system for rail vehicles to promote rail transport and develop the technology of rail vehicles. First, this paper gives a review of the existing energy labelling systems. Second, it summarizes the rail needs and rail stakeholders’ interests regarding energy efficiency and corresponding labelling. Last but not least, a proposal for an energy labelling system for rail vehicles is given.


2014 ◽  
Vol 548-549 ◽  
pp. 1815-1819 ◽  
Author(s):  
Xiao Chun Qin ◽  
She Gang Shao ◽  
Yi Shen

Green lighting technology has the advantages of energy efficiency, friendly environment, safety and comfort. Based on the introduction of green lighting technology, taken the Mt. Lushan West Sea tourist highway service as the case study, we analyzed light guide illumination, the optimum use of natural light and energy efficient lighting respectively from the aspects of technical characteristics and the specific highway service application. We finally made the economic analysis in the energy savings of green lights in the highway service, and the result showed that through the use of green lighting systems Mt. Lushan West Sea tourist highway service could save electricity and reduce operating costs 134,700 Yuan per year.


2012 ◽  
Vol 3 (1) ◽  
pp. 11-17 ◽  
Author(s):  
J. Frijns ◽  
R. Middleton ◽  
C. Uijterlinde ◽  
G. Wheale

Energy costs and climate change challenges the water industry to improve their energy efficiency. The number of examples of energy measures in water production and treatment is growing rapidly. In this paper, best practices of energy efficiency from the European water industry are presented with the objective of learning from each other. The best practices are collected within the framework of the Global Water Research Coalition's attempt to devise a global compendium ‘Best practices in the energy efficient design and operation of water industry assets’. The case studies in the compendium show significant energy savings in all parts of the water cycle. Examples with potential include the improved operational set up of pumping design, on line aeration control, and energy-efficient bubble aerators and sludge belt thickeners. Next to optimising energy efficiency across the water cycle, there are also opportunities for energy generation. Promising practices include biogas production from sludge (co)digestion and hydraulic energy generation from micro-turbines.


2018 ◽  
Vol 4 (2) ◽  
pp. 11-15
Author(s):  
Albert Abiodun Olotuah ◽  
Ayobami Margaret Olotuah ◽  
Abiodun Olukayode Olotuah

Sustainable energy-efficient housing is environmentally-conscious housing. Energy efficient houses consume less energy while maintaining or improving the comfort conditions of occupants. This paper examines low carbon initiatives in housing construction in Nigeria based on the use of stabilized soil blocks, solid interlocking blocks, and supplementary cementitious materials such as fly ash, rice husk ash, palm oil fuel ash, and their various combinations in concrete production as low carbon materials. These are materials readily available in Nigeria and can be useful for sustainable housing construction. Their use is for the purpose of reducing embodied energy in construction of houses and reduction of operational energy in housing use. Owing to the poor state of energy generation and transmission in Nigeria energy efficiency measures are imperative to reduce the energy required in houses. The paper thus affirms the need to adopt energy efficiency strategies in housing in order to achieve eco-friendly and sustainable environment in Nigeria.


2018 ◽  
Vol 45 ◽  
pp. 155-162 ◽  
Author(s):  
Priyanka Jajal ◽  
Trupti Mishra

Abstract. Climate change is a growing concern that is attracting international efforts. India, as a developing country, has committed to reducing its emission intensity of GDP up to 30 %–35 % by 2030. The emission intense sectors would be targeted to achieve climate commitment. One of the emission intense sector is construction raw material manufacturing that contributes 10 % share in the total emissions making it one of the potential mitigation sector. The study examines emissions from the construction raw materials namely, cement, steel, and brick manufacturing and presents two emission scenarios up to 2050. Energy efficient scenario (S2) is compared with a reference scenario (S1) developed based on a bottom-up approach. The results indicate that a moderate energy efficiency improvements and technological shifts lead to a decrease in emissions of 72 MT CO2 by 2030 and 137 MT CO2 by 2050. Further, the steel industry has the highest reduction potential, as the current technologies are energy inefficient. Similarly, the current dependency on fired bricks may be shifted to cement setting blocks leading to emission reductions. Cement manufacturing, on the other hand, shows limited scope for emission reduction that may be achieved through energy efficiency improvements. Efforts towards energy efficiency improvements in construction raw material manufacturing would result in reductions beyond the existing commitment of the Paris Agreement for India by 2030.


2015 ◽  
Vol 9 (4) ◽  
pp. 45-52
Author(s):  
Csaba Fogarassy ◽  
Bálint Horváth ◽  
Linda Szőke ◽  
Attila Kovács

The topic of the present study deals with the changes and future trends of the European Union’s climate policy. In addition, it studies the manner in which Hungary’s transport sector contributes to the success of the above. The general opinion of Hungarian climate policy is that the country has no need of any substantial climate policy measures, since it will be able to reach its emission reduction targets anyway. This is mostly true, because the basis year for the long term goals is around the middle/end of the 1980’s, when Hungary’s pollution indices were entirely different than today due to former large-scale industrial production. With the termination of these inefficient energy systems, Hungary has basically been “performing well” since the change in political system without taking any specific steps in the interest of doing so. The analysis of the commitments for the 2020-2030 climate policy planning period, which defined emissions commitments compared to 2005 GHG emissions levels, has also garnered similar political reactions in recent years. Thus, it is not the issue of decreasing GHG emissions but the degree to which possible emissions can be increased stemming from the conditions and characteristics of economic growth that is important from the aspect of economic policy. In 2005, the Hungarian transport sector’s emissions amounted to 11 million tons, which is equal to 1.2% of total EU emissions, meaning it does not significantly influence total transport emissions. However, the stakes are still high for developing a low GHG emission transport system, since that will decide whether Hungary can avoid those negative development tendencies that have plagued the majority of Western European transport systems. Can Budapest avoid the scourge of perpetual smog and traffic jams? Can it avert the immeasurable accumulation of externalities on the capital city’s public bypass roads caused by having road transport conduct goods shipping? JEL classification: Q58


2020 ◽  
Vol 22 (1) ◽  
Author(s):  
Rana Imam ◽  
Seong-Cheol Kang ◽  
Diana Quezada

Being able to provide high-quality, metro-like transit service at a fraction of the cost of other options, bus rapid transit (BRT) has been viewed as one of the most cost-effective public mass transport systems suitable for urban areas. Considering significant amounts of greenhouse gas (GHG) and air pollutant emissions are attributed to the transport sector, deploying low carbon buses for BRT systems should be of high priority. With a view to promoting low carbon buses instead of diesel buses for a BRT system currently being planned in Amman, Jordan, this paper evaluates several low carbon bus options – hybrid, plug-in hybrid, opportunity charging, trolleybus, and battery electric bus options – against the baseline case of diesel buses. While low carbon buses reduce GHG and air pollutant emissions often considerably, they usually require higher upfront capital costs and additional infrastructure investments. On the other hand, they tend to incur lower energy and maintenance costs and have a longer lifetime particularly for battery electric buses. All these advantages and disadvantages are included in the assessment of low carbon bus options relative to diesel buses. For the trunk routes of the Amman BRT, the analysis shows that the opportunity charging bus can be the most appealing option having a positive internal rate of return (IRR) for the incremental investment costs. For the feeder routes, both low carbon bus options considered, hybrid and battery electric, do not result in a positive IRR. Nevertheless, the battery electric bus is found to be a comparatively better option than the hybrid bus. In consideration of variability in several parameters used in the analysis such as capital expenditures, electricity price, and diesel price, a sensitivity analysis is conducted for both trunk and feeder routes. The results show that IRR could increase favorably under certain conditions.


2018 ◽  
pp. 5-15
Author(s):  
Lyudmila Swistun ◽  
Taina Zavora ◽  
Yuliia Khudolii

The main goal of the study is to analyse the residential real estate market in Ukraine from the point of view of the need and the possibility of increasing its energy efficiency. Also, it aims to justify effective financial and credit mechanisms for ensuring measures to improve the thermal protection properties of residential and non- residential real estate, in particular by introducing energy efficiency development projects. With this research we investigated Ukraine's housing stock and utility tariffs and concluded that a beneficial strategy to be applied in Ukraine is the energy-efficient retrofit of real estate. This is one of the most effective ways to re-profile unclaimed real estate units in the existing state or to reconstruct inefficiently used buildings. Also, we reviewed selected methods of energy efficient residential real estate development and mechanisms of financing energy- efficient renovation of real estate used in the EU. And, in our view, the next step of the Ukraine in the direction of improving the energy efficiency of housing should be the effective operation of a dedicated/specific energy efficiency fund to ensure stable financing of housing modernization projects, which will allow for a comprehensive renovation of buildings and lead to significant annual energy savings in this end-use sector.


Sign in / Sign up

Export Citation Format

Share Document