Procedures for Determining Surface Heat Flux Using Thin Film Gages on a Coated Metal Model in a Transient Test Facility

1988 ◽  
Vol 110 (2) ◽  
pp. 242-250 ◽  
Author(s):  
J. E. Doorly

The paper describes how thin film surface heat flux gages may be used to measure surface heat transfer rate to enamel-coated metal turbine blades. Flexible methods, which are also computationally efficient, for obtaining the heat transfer rate are described. Experimental results, using the new coated metal turbine blades and processing techniques, in a stationary transient cascade facility are given, and are shown to agree well with results using the existing method for gages on single-layer substrate blades. The application of the gages for measuring highly unsteady heat transfer is also discussed.

Author(s):  
Terry Hendricks ◽  
Jaal Ghandhi ◽  
John Brossman

Heat flux measurements were performed in an air-cooled utility engine using a fast-response coaxial-type surface thermocouple. The surface heat flux was calculated using both analytical and numerical models. The heat flux was found to be a strong function of engine load. The peak heat flux and initial heat flux rise rate increase with engine load. The measured heat flux data were used to estimate a global heat transfer rate, and this was compared with the heat transfer rate calculated by a single-zone heat release analysis. The measured values of heat transfer were higher than the calculated values largely because of the lack of spatial averaging. The high load data showed an unexplainable negative heat flux during the expansion stroke while the gas temperature was still high. A 1D and 2D finite difference numerical model utilizing an adaptive timestep Crank-Nicholson (CN) integration routine was developed to investigate the surface temperature measurement. Applying the measured surface temperature profile to the 1D model, the resultant surface heat flux showed excellent agreement with the analytical inversion solution and captured the reversal of the energy flow back into the cylinder during the expansion stroke. The 2D numerical model was developed to observe transient lateral conduction effects within the probe and incorporated the various materials used in the construction and assembly of the heat flux sensor. The resulting average heat flux profile for the test case is shown to be slightly higher in peak and longer in duration when compared with the results from the 1D analytical inversion, and this is attributed to contributions from the high thermal diffusivity constituents in the sensor. Furthermore, the negative heat flux at high load was not eliminated suggesting that factors other than lateral conduction may be affecting the measurement accuracy.


1986 ◽  
Vol 108 (1) ◽  
pp. 153-160 ◽  
Author(s):  
J. E. Doorly ◽  
M. L. G. Oldfield

The paper describes a technique which enables measurements of the surface heat transfer rate to be made using thin-film gages deposited on a vitreous enamel-coated metal model. It is intended that this will have particular application in rotating turbine test rigs, where it offers considerable advantages over present techniques. These include ease of manufacture, instrumentation, durability, and lack of interference with the basic flow. The procedures for gage calibration and measurement processing are outlined, and the results of wind tunnel tests which confirm that the method is both practical and accurate are described.


2014 ◽  
Vol 136 (7) ◽  
Author(s):  
Satya V. Ravikumar ◽  
Jay M. Jha ◽  
Soumya S. Mohapatra ◽  
Surjya K. Pal ◽  
Sudipto Chakraborty

Heat transfer studies of a hot AISI 304 stainless steel plate by water jet impingement with different concentrations of three different types of surfactants have been investigated. The study involves a square plate of 100 mm × 100 mm surface area and 6 mm thickness with three subsurface thermocouples positioned at various locations inside the plate. The influence of jet height has been studied by varying the distance between the nozzle and plate from 200 mm to 600 mm. The results show that the heat transfer rate is found to increase with the jet height up to 400 mm and thereafter decreases due to capillary instability of liquid jet. Based on the maximum surface heat flux obtained for a particular nozzle height of 400 mm and an initial surface temperature of 900 °C, further experiments have been carried out with different types of surfactants. The types of surfactants used in the experimental study are anionic surfactant (sodium dodecyl sulphate, SDS), cationic surfactant (cetyltrimethylammonium bromide, CTAB) and nonionic surfactant (Polyoxyethylene 20 sorbitan monolaurate, Tween 20). During cooling, the transient temperature data measured by thermocouples have been analyzed by inverse heat conduction procedure to calculate surface heat flux and surface temperatures. The increase in surface heat flux has been observed with increasing concentration of surfactants and it has been found to be limited to a particular concentration of surfactant after which further increase in concentration leads to decrease in heat flux. Use of surfactant added water minimizes the surface tension and promotes better spreadability of coolant on the test specimen by reducing the solid–liquid contact angle. The maximum heat transfer rate has been found by using nonionic surfactant additive which can primarily be attributed to its lesser foam formability nature.


Mathematics ◽  
2021 ◽  
Vol 9 (14) ◽  
pp. 1612
Author(s):  
Iskandar Waini ◽  
Anuar Ishak ◽  
Ioan Pop

This study investigates the nanofluid flow towards a shrinking cylinder consisting of Al2O3 nanoparticles. Here, the flow is subjected to prescribed surface heat flux. The similarity variables are employed to gain the similarity equations. These equations are solved via the bvp4c solver. From the findings, a unique solution is found for the shrinking strength λ≥−1. Meanwhile, the dual solutions are observed when λc<λ<−1. Furthermore, the friction factor Rex1/2Cf and the heat transfer rate Rex−1/2Nux increase with the rise of Al2O3 nanoparticles φ and the curvature parameter γ. Quantitatively, the rates of heat transfer Rex−1/2Nux increase up to 3.87% when φ increases from 0 to 0.04, and 6.69% when γ increases from 0.05 to 0.2. Besides, the profiles of the temperature θ(η) and the velocity f’(η) on the first solution incline for larger γ, but their second solutions decline. Moreover, it is noticed that the streamlines are separated into two regions. Finally, it is found that the first solution is stable over time.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Chunji Yan ◽  
H. B. Ma

A mathematical model predicting heat transfer and film thickness in thin-film region is developed herein. Utilizing dimensionless analysis, analytical solutions have been obtained for heat flux distribution, total heat transfer rate per unit length, location of the maximum heat flux and ratio of conduction thermal resistance to convection thermal resistance in the evaporating film region. These analytical solutions show that the maximum dimensionless heat flux is constant which is independent of the superheat. Maximum total heat transfer rate is determined for a given film region. The ratio of conduction thermal resistance to convection thermal resistance is a function of dimensionless film thickness. This work will lead to a better understanding of heat transfer and fluid flow occurring in the evaporating film region.


Author(s):  
Edwin Igiede ◽  
Patrick F. Mensah ◽  
Stephen Akwaboa

High Temperature exposure and the corresponding thermo-mechanical behavior of cylindrical polymer composite pipe using CFD simulation has been investigated in this study. The software FLUENT was employed for the analysis of heat transfer, by coupling equations of energy and motion. Analysis was done based on applied external boundary temperature profile, change in internal energy, the total surface heat flux and surface heat transfer rate in order to evaluate the extent of thermal damage. FLUENT compatible program written in C++ language in the form of user define functions (UDF) has been developed and used to specify the time dependent heat flux generated temperature as well as temperature dependent thermal properties of density, thermal conductivity and specific heat. Available furnace test experimental data from (ASTM 1173-95) database were used as outer surface boundary condition in the model setup by developing it into UDF correlation equations. The outputs of the FLUENT simulations are predictions of transient temperature distribution through the thickness of the pipe wall that were then used in evaluating the thermal stresses of the composite pipe. Validation of the simulation results is done with existing data available in the literature. Using the wall generated temperatures, internal energy, the rate of change of the temperature dependent properties and the heat transfer rate, the thermal endurance of each of the coatings materials has been predicted in this work. At the same time knowledge of the thermal performance of these materials is essential for the optimum design of protection based on the composite application.


Author(s):  
Chunji Yan ◽  
Hongbin Ma

A mathematical model predicting heat transfer and film thickness in thin film region is developed. Utilizing the dimensionless analysis, analytical solutions of the heat flux distribution, the total heat transfer rate per unit width, the location of the maximum heat flux and the ratio of the conduction thermal resistance to the convection thermal resistance in evaporating film region have been obtained. The analytical solutions obtained herein indicate that the maximum dimensionless heat flux is constant which is independent on the superheat. For a given thin film region, its maximum total heat transfer rate is determined. The ratio of the conduction thermal resistance to the convection thermal resistance is a function of dimensionless film thickness. This work will lead to a better understanding of heat transfer and fluid flow occurring in the evaporating film region.


Author(s):  
Muhammad Azmain Abdullah ◽  
M. Ruhul Amin ◽  
Mohammad Ali

Heat exchangers are widely used in heating and cooling devices. The primary challenge is to improve the efficiency of the heat transfer equipment. Researchers have utilized various techniques to achieve this goal. Using twisted tapes could significantly increase the heat transfer rate from a circular surface due to turbulence generated from swirl flow. To enhance the heat transfer rate by twisted tape, two types of arrangements namely: (i) plain twisted tape and (ii) altered twisted tape geometries are used. These arrangements result in swirl flows. For improving heat transfer through swirl flow, some important parameters such as Reynolds number, external surface temperature, friction factor, inlet pressure, and surface heat flux are also considered. To identify the aftereffect of the velocity of inlet water, several parameters namely: (i) external surface temperature, (ii) inlet pressure, (iii) external surface heat flux and (iv) twist ratio are varied. A numerical modelling using k-ε method is performed to evaluate the effects of turbulence from the twisted tape on the heat transfer rate. The objective is to analyze the improvement of heat transfer effectiveness due to the swirl flow. The change in the values of the resulting Reynolds number by changing the inlet fluid velocity from 0.1 ms−1 to 0.7 ms−1 and rotational speed from 200 rpm to 600 rpm is studied. It is observed that for such changes heat transfer increases by 17 percent. It is also observed that heat transfer is directly proportional to inlet pressure and inversely proportional to the increment of twist ratio. The rate of heat transfer increased from 17 percent to 19 percent when the angular velocity of the twisted tape is changed from the 0 rpm to 600 rpm while the velocity of the water inside the pipe is held constant at 0.7 ms−1. Higher heat transfer rate is observed with high inlet pressure. Likewise, higher value of the Nusselt number is observed with higher rotational speed of the twisted tape and higher velocity at the pipe inlet. In addition, it is also observed that when the twist ratio is changed from 4 to 6, the rate of heat transfer is diminished by 6 percent.


Author(s):  
Ashutosh Kumar Yadav ◽  
Parantak Sharma ◽  
Avadhesh Kumar Sharma ◽  
Mayank Modak ◽  
Vishal Nirgude ◽  
...  

Impinging jet cooling technique has been widely used extensively in various industrial processes, namely, cooling and drying of films and papers, processing of metals and glasses, cooling of gas turbine blades and most recently cooling of various components of electronic devices. Due to high heat removal rate the jet impingement cooling of the hot surfaces is being used in nuclear industries. During the loss of coolant accidents (LOCA) in nuclear power plant, an emergency core cooling system (ECCS) cool the cluster of clad tubes using consisting of fuel rods. Controlled cooling, as an important procedure of thermal-mechanical control processing technology, is helpful to improve the microstructure and mechanical properties of steel. In industries for heat transfer efficiency and homogeneous cooling performance which usually requires a jet impingement with improved heat transfer capacity and controllability. It provides better cooling in comparison to air. Rapid quenching by water jet, sometimes, may lead to formation of cracks and poor ductility to the quenched surface. Spray and mist jet impingement offers an alternative method to uncontrolled rapid cooling, particularly in steel and electronics industries. Mist jet impingement cooling of downward facing hot surface has not been extensively studied in the literature. The present experimental study analyzes the heat transfer characteristics a 0.15mm thick hot horizontal stainless steel (SS-304) foil using Internal mixing full cone (spray angle 20 deg) mist nozzle from the bottom side. Experiments have been performed for the varied range of water pressure (0.7–4.0 bar) and air pressure (0.4–5.8 bar). The effect of water and air inlet pressures, on the surface heat flux has been examined in this study. The maximum surface heat flux is achieved at stagnation point and is not affected by the change in nozzle to plate distance, Air and Water flow rates.


1999 ◽  
Author(s):  
Wayne N. O. Turnbull ◽  
Patrick H. Oosthuizen

Abstract A new experimental technique has been developed that permits the determination of local surface heat transfer coefficients on surfaces without requirement for calibration of the temperature-sensing device. The technique uses the phase delay that develops between the surface temperature response and an imposed periodic surface heat flux. This phase delay is dependent upon the thermophysical properties of the model, the heat flux driving frequency and the local heat transfer coefficient. It is not a function of magnitude of the local heat flux. Since only phase differences are being measured there is no requirement to calibrate the temperature sensor, in this instance a thermochromic liquid crystal. Application of a periodic surface heat flux to a flat plate resulted in a surface colour response that was a function of time. This response was captured using a standard colour CCD camera and the phase delay angles were determined using Fourier analysis. Only the 8 bit G component of the captured RGB signal was required, there being no need to determine a Hue value. From these experimentally obtained phase delay angles it was possible to determine heat transfer coefficients that compared well with those predicted using a standard correlation.


Sign in / Sign up

Export Citation Format

Share Document