Stress Analysis of Elliptical Tube Plates in Heat Exchangers

1987 ◽  
Vol 109 (3) ◽  
pp. 310-314 ◽  
Author(s):  
Zhi-Fu Sang ◽  
G. E. O. Widera

Elliptical tube plates are used widely in high temperature, high pressure heat exchangers and waste heat boilers. This paper presents a detailed analysis of the stress distribution in elliptical tube plates subjected to internal pressure and discusses the location of the maximum stress. Two test models were used to gather data. Calculations were based on two-dimensional finite element analysis. The experiments used strain gage measurements. The results of the analysis of the two models show that the theoretical calculations and the experimental data are in good agreement, and that the location of the maximum stress is not at the crown of the elliptical tube plates. The latter result differs from the previously published conclusions of Rachkov and Morozov [1].

2021 ◽  
Vol 25 (Special) ◽  
pp. 1-115-1-220
Author(s):  
Adnan J. Kazem ◽  
◽  
Amer M. Ali ◽  

Shaded pole induction motor is one of the simplest and least expensive types of single-phase motors, but one of the most difficult to analyze. In this paper, we adopted a two-dimensional finite element method 2DFEM, which is one of the most accurate methods to analyze such motors. We used Ansys Maxwell2D software with assist of AutoCAD software in modeling and analyzing a reluctance-augmented shaded pole motor. The 2DFEM results of torques and currents for this motor obtained from Maxwell2D were compared with the analytical results and appeared a good agreement.


1983 ◽  
Vol 105 (2) ◽  
pp. 206-212 ◽  
Author(s):  
Hua-Ping Li ◽  
F. Ellyin

A plate weakened by an oblique penetration of a circular cylindrical hole has been investigated. The stress concentration around the hole is determined by a finite-element method. The results are compared with experimental data and other analytical works. Parametric studies of effects of angle of inclination, plate thickness, and width are performed. The maximum stress concentration factor (SCF) obtained from the finite-element analysis is higher than experimental results, and this deviation increases with the increase of angle of skewness. The major reason for this difference is attributed to the shear-action between layers parallel to the plate surface which cannot be directly included in the two-dimensional elements. An empirical formula is derived which accounts for the shear-action and renders the finite-element predictions in line with experimentally observed data.


2009 ◽  
Vol 131 (4) ◽  
Author(s):  
H. F. Wang ◽  
Z. F. Sang ◽  
L. P. Xue ◽  
G. E. O. Widera

The burst pressure of cylinders with hillside nozzle is determined using both experimental and finite element analysis (FEA) approaches. Three full-scale test models with different angles of the hillside nozzle were designed and fabricated specifically for a hydrostatic test in which the cylinders were pressurized with water. 3D static nonlinear finite element simulations of the experimental models were performed to obtain the burst pressures. The burst pressure is defined as the internal pressure for which the structure approaches dimensional instability, i.e., unbounded strain for a small increment in pressure. Good agreement between the predicted and measured burst pressures shows that elastic-plastic finite element analysis is a viable option to estimate the burst pressure of the cylinders with hillside nozzles. The preliminary results also suggest that the failure location is near the longitudinal plane of the cylinder-nozzle intersection and that the burst pressure increases slightly with an increment in the angle of the hillside nozzle.


2009 ◽  
Vol 16-19 ◽  
pp. 1248-1252
Author(s):  
Chun Dong Zhu ◽  
Man Chun Zhang ◽  
Lin Hua

As an important forged part of an automobile, the inner hole of the half-shaft bushing must be formed directly. However, the process requires many steps, and how the forging, or deformation, is spread over the production steps directly affects the die life and forging force required. In this paper, the three steps involved in directly forging a half shaft bushing's inner hole are simulated using the two-dimensional finite element method. Further more, we improve the forging process. From numerical calculation, the improved necessary forging force is found to be only half the original force, and the die life is doubled.


2014 ◽  
Vol 580-583 ◽  
pp. 2134-2140
Author(s):  
Jian Zhang ◽  
Jian Feng Zhai ◽  
Xian Mei Wang ◽  
Jie Chen

Two-Dimensional finite element analysis was used to investigate the performance of seawall construction over weak subgrade soil using artificial base layer material consisted of cemented sand cushion comprising geosynthetics materials. Two types of base layer materials pure sand and cemented sand comprising husk rich ash and two types of geosynthetics materials geogrid and geotextile were used. Constitutive models were used to represent different materials in numerical analysis. The competence of two-dimensional numerical analysis was compared with experimental results. Numerical results showed a superior harmony with the experimental results. Finite element analysis model proved to be a great tool to determine the parameters that are difficult to measure in laboratory experiments. In addition, finite element analysis has the benefit of cost and time saving when compared to experimental investigation work. Numerical results showed strain induced in geosynthetics eliminated beyond a distance approximately equal six times of footing width.


Sign in / Sign up

Export Citation Format

Share Document