The Use and Evaluation of Shock Spectra in the Dynamic Analysis of Structures

1973 ◽  
Vol 40 (2) ◽  
pp. 433-438
Author(s):  
L. M. Butzel ◽  
H. C. Merchant

An important use of shock spectra is to make estimates of the maximum responses of linearly modeled multidegree-of-freedom structures to shock excitations. In this paper a lower-bound estimate to complement a well known upper bound on such a maximum response is proposed and examined. The conditions under which the estimate is a lower bound are delineated. The set of bounds is applied to an examination of the performance of two maximum response estimators in current use, the root-mean-square, and one which is a function of the root-mean-square and dominant mode. The results of an empirical study show that the estimators do not perform well except when the bounds are close together.

2019 ◽  
Vol 13 ◽  
pp. 174830181983303
Author(s):  
Haitao Xu ◽  
Leng Han ◽  
Qingqing Huang ◽  
Song Feng ◽  
Junhui Cao

In the traditional time-shifting based phase difference method, considerable errors may be introduced by wrapped phase problem as long as translation coefficient tends to one even in a small-scale turbulence noise. In this paper, an improved frequency estimator is proposed to overcome the problem of wrapped phase by combination of phase difference method and interpolation algorithm. Compared with the traditional method of phase difference based on time-shifting, the improved algorithm can obtain an accurate estimate when translation coefficient exceeds one. Comparative studies were done by means of root-mean-square error over Cramer–Rao lower bound. According to the computer simulations, it is demonstrated that root-mean-square errors can cross Cramer–Rao lower bound if the translation coefficient is properly selected even in the case of the low signal-to-noise ratio, which implies that the proposed algorithm has a strong noise immunity. Finally, the advantage of the proposed algorithm is illustrated for the simulation signal which contained strong local random noise.


2016 ◽  
Vol 26 (1) ◽  
pp. 58
Author(s):  
Qiurong XIE ◽  
Zheng JIANG ◽  
Qinglu LUO ◽  
Jie LIANG ◽  
Xiaoling WANG ◽  
...  

2021 ◽  
Vol 13 (9) ◽  
pp. 1630
Author(s):  
Yaohui Zhu ◽  
Guijun Yang ◽  
Hao Yang ◽  
Fa Zhao ◽  
Shaoyu Han ◽  
...  

With the increase in the frequency of extreme weather events in recent years, apple growing areas in the Loess Plateau frequently encounter frost during flowering. Accurately assessing the frost loss in orchards during the flowering period is of great significance for optimizing disaster prevention measures, market apple price regulation, agricultural insurance, and government subsidy programs. The previous research on orchard frost disasters is mainly focused on early risk warning. Therefore, to effectively quantify orchard frost loss, this paper proposes a frost loss assessment model constructed using meteorological and remote sensing information and applies this model to the regional-scale assessment of orchard fruit loss after frost. As an example, this article examines a frost event that occurred during the apple flowering period in Luochuan County, Northwestern China, on 17 April 2020. A multivariable linear regression (MLR) model was constructed based on the orchard planting years, the number of flowering days, and the chill accumulation before frost, as well as the minimum temperature and daily temperature difference on the day of frost. Then, the model simulation accuracy was verified using the leave-one-out cross-validation (LOOCV) method, and the coefficient of determination (R2), the root mean square error (RMSE), and the normalized root mean square error (NRMSE) were 0.69, 18.76%, and 18.76%, respectively. Additionally, the extended Fourier amplitude sensitivity test (EFAST) method was used for the sensitivity analysis of the model parameters. The results show that the simulated apple orchard fruit number reduction ratio is highly sensitive to the minimum temperature on the day of frost, and the chill accumulation and planting years before the frost, with sensitivity values of ≥0.74, ≥0.25, and ≥0.15, respectively. This research can not only assist governments in optimizing traditional orchard frost prevention measures and market price regulation but can also provide a reference for agricultural insurance companies to formulate plans for compensation after frost.


Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 885
Author(s):  
Sergio Ghidini ◽  
Luca Maria Chiesa ◽  
Sara Panseri ◽  
Maria Olga Varrà ◽  
Adriana Ianieri ◽  
...  

The present study was designed to investigate whether near infrared (NIR) spectroscopy with minimal sample processing could be a suitable technique to rapidly measure histamine levels in raw and processed tuna fish. Calibration models based on orthogonal partial least square regression (OPLSR) were built to predict histamine in the range 10–1000 mg kg−1 using the 1000–2500 nm NIR spectra of artificially-contaminated fish. The two models were then validated using a new set of naturally contaminated samples in which histamine content was determined by conventional high-performance liquid chromatography (HPLC) analysis. As for calibration results, coefficient of determination (r2) > 0.98, root mean square of estimation (RMSEE) ≤ 5 mg kg−1 and root mean square of cross-validation (RMSECV) ≤ 6 mg kg−1 were achieved. Both models were optimal also in the validation stage, showing r2 values > 0.97, root mean square errors of prediction (RMSEP) ≤ 10 mg kg−1 and relative range error (RER) ≥ 25, with better results showed by the model for processed fish. The promising results achieved suggest NIR spectroscopy as an implemental analytical solution in fish industries and markets to effectively determine histamine amounts.


Author(s):  
Igor Junio de Oliveira Custódio ◽  
Gibson Moreira Praça ◽  
Leandro Vinhas de Paula ◽  
Sarah da Glória Teles Bredt ◽  
Fabio Yuzo Nakamura ◽  
...  

This study aimed to analyze the intersession reliability of global positioning system (GPS-based) distances and accelerometer-based (acceleration) variables in small-sided soccer games (SSG) with and without the offside rule, as well as compare variables between the tasks. Twenty-four high-level U-17 soccer athletes played 3 versus 3 (plus goalkeepers) SSG in two formats (with and without the offside rule). SSG were performed on eight consecutive weeks (4 weeks for each group), twice a week. The physical demands were recorded using a GPS with an embedded triaxial accelerometer. GPS-based variables (total distance, average speed, and distances covered at different speeds) and accelerometer-based variables (Player Load™, root mean square of the acceleration recorded in each movement axis, and the root mean square of resultant acceleration) were calculated. Results showed that the inclusion of the offside rule reduced the total distance covered (large effect) and the distances covered at moderate speed zones (7–12.9 km/h – moderate effect; 13–17.9 km/h – large effect). In both SSG formats, GPS-based variables presented good to excellent reliability (intraclass correlation coefficients – ICC > 0.62) and accelerometer-based variables presented excellent reliability (ICC values > 0.89). Based on the results of this study, the offside rule decreases the physical demand of 3 versus 3 SSG and the physical demands required in these SSG present high intersession reliability.


Sign in / Sign up

Export Citation Format

Share Document