Fluid Movement in a Channel With Permeable Walls Covered by Porous Media: A Model of Lung Alveolar Sheet

1975 ◽  
Vol 42 (1) ◽  
pp. 45-50 ◽  
Author(s):  
H. T. Tang ◽  
Y. C. Fung

The smallest microscopic blood vessels in the human lung are organized into sheet-like networks. These sheets form the walls of the 300 million alveoli in which air flows due to breathing. Each sheet may be idealized into a channel bounded by two thin layers of porous media. This paper is concerned with the blood flow in the channel and water movement in the porous wall. The Reynolds number in the lung alveolar sheets is very low, so creeping flow is assumed. Analytical and numerical results on the velocity and pressure distribution in the porous layers are presented.

1975 ◽  
Vol 42 (3) ◽  
pp. 536-540 ◽  
Author(s):  
Y. C. Fung ◽  
H. T. Tang

The analysis of G. I. Taylor on the dispersion of solutes in a circular cylindrical tube is extended to the case of flow in a channel bounded by porous layers. Creeping flow in the channel and the porous layers stimulates the blood flow in the alveolar sheets of the lung. Overall perturbation on the longitudinal dispersion due to the porous layers is evaluated. It is shown that the mean coefficient of apparent diffusivity is smaller in a channel bounded by porous layers than that in a channel with impermeable walls for the case that the channel walls are permeable to solvent but not to tracer. For the case that channel walls are permeable to both solvent and tracer, the mean coefficient of apparent diffusivity is nearly the same as that of a channel with impermeable walls.


1969 ◽  
Vol 9 (04) ◽  
pp. 434-442
Author(s):  
R.C. Smith ◽  
R.A. Greenkorn

Abstract Hele-Shaw cells are used to model creeping flow through porous media (where Darcy's law is valid). The effects of inertia on flow about obstructions in a Hele-Shaw cell can be calculated by a perturbation method if one can determine a solution to Laplace's equation. Results of a computer solution for flow about circular, square and elliptical obstructions are presented These results show that for a modified presented These results show that for a modified Reynolds number of less than 1, the inertia terms are small; and for values of less than 3, the average streamline predicts the ideal flow. Therefore, the analogy might be used for studying flow in porous media up to a modified Reynolds number of at least 3. Introduction The nature of fluid flow in porous media is of interest in the fields of soil mechanics, ground water flow, petroleum production, filtration and flow, in packed beds. Because it is very difficult to study the phenomenological behavior of flow in porous media, homologs and analogs are used to study flow characteristics. A Hele-Shaw model, made of two closely spaced plates - usually glass - is often used as an analogy to two-dimensional flow in porous media. Hele-Shaw showed experimentally that the streamline configuration for creeping flow around an obstacle located between two closely spaced parallel plates is the same as for two-dimensional parallel plates is the same as for two-dimensional ideal flow about the same obstacle. Stokes verified these observations mathematically. The usual equation of motion for flow in porous media is Darcy's law. The form of the mathematical statement of Darcy's law is identical, within a multiplicative constant, to the expression for the average velocity over the place gap in the plane of a Hele-Shaw model. These models may be used to describe flow in both homogeneous and heterogeneous porous media. In the mathematical proof of the Hele-Shaw analogy it is assumed that the convective terms in the Navier-Stokes equations are negligible and that the equations of motion degenerate to Laplace's equation, with pressure the dependent variable. Whenever a Hele-Shaw model is used as an analogy to flow in porous media, the validity of this assumption is in question. Riegels showed that if convection is not neglected, the velocity distribution around a cylindrical obstruction in the flow field depends on a Reynolds number, the plate spacing, and a dimension characteristic of the obstacle. Riegels solution, a perturbation solution, uses the boundary condition that the flow rate into the obstacle averaged over the plate gap at any point on the obstacle is zero. The method requires that a solution to Poisson's equation for the perturbation pressure be found. Riegels evaluated this solution pressure be found. Riegels evaluated this solution for the case of the cylindrical obstruction. His method may be simplified by eliminating the need for solving Poisson's equation for the perturbation pressure. Instead, an analytic expression for the pressure. Instead, an analytic expression for the perturbation pressure gradient is obtained (valid perturbation pressure gradient is obtained (valid for arbitrary shapes) and used to eliminate pressure from the equations for the perturbation velocities. The results show, for symmetrical shapes, that if N'Re less than 1, the convective acceleration terms are small, and that the average velocities represent ideal flow up m at least N'Re 3, where: ..........................................(1) L is a characteristic dimension of the obstacle perpendicular to flow, b is the plate spacing, mu is perpendicular to flow, b is the plate spacing, mu is viscosity, va is velocity of approach and p is density. SPEJ P. 434


2017 ◽  
Vol 831 ◽  
pp. 41-71 ◽  
Author(s):  
Y. Kuwata ◽  
K. Suga

To investigate which component of the anisotropic permeability tensor of porous media influences turbulence over porous walls, direct numerical simulation of anisotropic porous-walled channel flows is performed by the D3Q27 multiple-relaxation-time lattice Boltzmann method. The presently considered anisotropic permeable walls have square pore arrays aligned with the Cartesian axes. Vertical, streamwise and spanwise pore arrays are systematically introduced to the walls to impose anisotropic permeability. Simulations are carried out at a friction Reynolds number of 111 and 230, which is based on the averaged friction velocity of the porous bottom and the smooth top walls. It is found that streamwise and spanwise permeabilities enhance turbulence whilst vertical permeability itself does not. In particular, the enhancement of turbulence is remarkable over porous walls with streamwise permeability. Over streamwise permeable walls, development of high- and low-speed streaks is prevented whilst large-scale intermittent patched patterns of ejection motions are induced. It is revealed by two-point correlation analysis that streamwise permeability allows the development of streamwise large-scale perturbations induced by Kelvin–Helmholtz instability. Spectral analysis reveals that this perturbation contributes to the enhancement of the Reynolds shear stress, leading to significant skin friction of the porous interface. Through the comparison between the two different Reynolds-number cases, it is found that, as the Reynolds number increases, the streamwise perturbation becomes larger and more organized. Consequently, owing to the enhancement of the large-scale perturbation, a significant Reynolds-number dependence of the skin friction of the porous interface can be observed over the streamwise permeable wall. It is also implied that the wavelength of the perturbation can be reasonably scaled by the outer-layer length scale.


1980 ◽  
Vol 102 (1) ◽  
pp. 8-22 ◽  
Author(s):  
A. M. Hecht ◽  
H. Yeh ◽  
S. M. K. Chung

Collapse of arteries subjected to a band of hydrostatic pressure of finite length is analyzed. The vessel is treated as a long, thin, linearly elastic, orthotropic cylindrical shell, homogeneous in composition, and with negligible radial stresses. Blood in the vessel is treated as a Newtonian fluid and the Reynolds number is of order 1. Results are obtained for effects of the following factors on arterial collapse: intraluminal pressure, length of the pressure band, elastic properties of the vessel, initial stress both longitudinally and circumferentially, blood flow Reynolds number, compressibility, and wall thickness to radius ratio. It is found that the predominant parameter influencing vessel collapse for the intermediate range of vessel size and blood flow Reynolds numbers studied is the preconstricted intraluminal pressure. For pressure bands less than about 10 vessel radii the collapse pressure increases sharply with increasing intraluminal pressure. Initial axial prestress is found to be highly stabilizing for small band lengths. The effects of fluid flow are found to be small for pressure bands of less than 100 vessel radii. No dramatic orthotropic vessel behavior is apparent. The analysis shows that any reduction in intraluminal pressure, such as that produced by an upstream obstruction, will significantly lower the required collapse pressure. Medical implications of this analysis to Legg-Perthes disease are discussed.


1979 ◽  
Vol 46 (3) ◽  
pp. 510-512 ◽  
Author(s):  
M. B. Stewart ◽  
F. A. Morrison

Low Reynolds number flow in and about a droplet is generated by an electric field. Because the creeping flow solution is a uniformly valid zeroth-order approximation, a regular perturbation in Reynolds number is used to account for the effects of convective acceleration. The flow field and resulting deformation are predicted.


2016 ◽  
Vol 139 (1) ◽  
Author(s):  
Siddharth Shankar Bhatt ◽  
Amit Medhavi ◽  
R. S. Gupta ◽  
U. P. Singh

In the present investigation, problem of heat transfer has been studied during peristaltic motion of a viscous incompressible fluid for two-dimensional nonuniform channel with permeable walls under long wavelength and low Reynolds number approximation. Expressions for pressure, friction force, and temperature are obtained. The effects of different parameters on pressure, friction force, and temperature have been discussed through graphs.


2017 ◽  
Vol 1 (4) ◽  
pp. 6-15
Author(s):  
Francesco Calivá ◽  
Georgios Leontidis ◽  
Piotr Chudzik ◽  
Andrew Hunter ◽  
Luca Antiga ◽  
...  

Purpose: In this study, it is shown that hemodynamic features are applicable as biomarkers to evaluate the progression of diabetic retinopathy (DR). Methods: Ninety-six fundus images from twenty-four subjects were selected. For each patient, four photographs were captured during the three years before DR and in the first year of DR. The vascular trees, which consisted of a parent vessel and two child branches were extracted, and at the branching nodes, the fluid dynamic conditions were estimated. Results: Veins were mostly affected during the last stage of diabetes before DR. In the arteries, the blood flow in both child branches and the Reynolds number in the smaller child branch were mostly affected. Conclusion: This study showed that hemodynamic features can add further information to the study of the progression of DR.


Sign in / Sign up

Export Citation Format

Share Document