The Application of Thermal Transpiration to a Gaseous Pump

1970 ◽  
Vol 92 (2) ◽  
pp. 294-302 ◽  
Author(s):  
P. A. Orner ◽  
G. B. Lammers

A direct thermal-to-pneumatic energy converter utilizing the principle of thermal transpiration through a porous membrane is described. The applicability of this no-moving-part pump to a fluidic control system is discussed. A laboratory model has been constructed and experimentally evaluated for several gases, membrane types, and temperature ranges. A theoretical model is derived from the binary diffusion equations of kinetic theory. A linearized version of this model is verified experimentally for small temperature gradients. The kinetic theory model is evaluated numerically to predict the static performance of a pump for large temperature gradients.

Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 363
Author(s):  
Marina Dolfin ◽  
Leone Leonida ◽  
Eleonora Muzzupappa

This paper adopts the Kinetic Theory for Active Particles (KTAP) approach to model the dynamics of liquidity profiles on a complex adaptive network system that mimic a stylized financial market. Individual incentives of investors to form or delete a link is driven, in our modelling framework, by stochastic game-type interactions modelling the phenomenology related to policy rules implemented under Basel III, and it is exogeneously and dynamically influenced by a measure of overnight interest rate. The strategic network formation dynamics that emerges from the introduced transition probabilities modelling individual incentives of investors to form or delete links, provides a wide range of measures using which networks might be considered “best” from the point of view of the overall welfare of the system. We use the time evolution of the aggregate degree of connectivity to measure the time evolving network efficiency in two different scenarios, suggesting a first analysis of the stability of the arising and evolving network structures.


1980 ◽  
Vol 6 (3-4) ◽  
pp. 227-229
Author(s):  
Carl R. Zimmer

A modified version of the computer programme SINC-S is described which permits the user to specify independently up to 30 different device temperatures in a given problem when the proper control statement is included. An additional option is an algorithm for the steady-state solution of a non-linear network with periodic inputs, so that realistic system operation may be simulated. The programme may be used to provide more accurate simulation of circuits where large temperature gradients are present, and to furnish input data for other thermal analysis programmes


Author(s):  
John Miller ◽  
Wanyoung Jang ◽  
Chris Dames

In analogy to the asymmetric transport of electricity in a familiar electrical diode, a thermal rectifier transports heat more favorably in one direction than in the reverse direction. One approach to thermal rectification is asymmetric scattering of phonons and/or electrons, similar to suggestions in the literature for a sawtooth nanowire [1] or 2-dimensional electron gas with triangular scatterers [2]. To model the asymmetric heat transport in such nanostructures, we have used phonon ray-tracing, focusing on characteristic lengths that are small compared to the mean free path of phonons in bulk. To calculate the heat transfer we use a transmission-based (Landauer-Buttiker) method. The system geometry is described by a four-dimensional transfer function that depends on the position and angle of phonon emission and absorption from each of two contacts. At small temperature gradients, the phonon distribution function is very close to the usual isotropic equilibrium (Bose-Einstein) distribution, and there is no thermal rectification. In contrast, at large temperature gradients, the anisotropy in the phonon distribution function becomes significant, and the resulting heat flux vs. temperature curve (analogous to I-V curve of a diode) reveals large thermal rectification.


1975 ◽  
Vol 97 (1) ◽  
pp. 64-71 ◽  
Author(s):  
B. Lakshminarayana

An analysis is carried out to predict the nature and magnitude of secondary flows induced by temperature gradients in turbomachinery stator and rotor. The effect of this thermal driven secondary flow is severe in gas turbines, due to large temperature gradients that exist at the outlet of the combustion chamber. Secondary flows change the temperature profiles at the exit of the blade row and generate thermal wakes. A method of incorporating these effects into the calculation of gas, blade and casing temperatures in a turbine is demonstrated through an example.


1932 ◽  
Vol 6 (4) ◽  
pp. 428-443 ◽  
Author(s):  
B. P. Sutherland ◽  
O. Maass

The work described is an investigation of the viscosity of air, hydrogen and carbon dioxide. The principle of damped oscillations was employed and an apparatus was built embodying many new features which make possible an accuracy greater than has hitherto been obtained. It was the attempt at the elimination of experimental error in the oscillating disk method which was the main feature of the investigation. At room temperatures where values in the literature are reliable excellent agreement with the best data has been obtained, but at lower temperatures where there is much divergence in published values the present results are of importance as giving more reliable and accurate data than hitherto available. For hydrogen and air the temperature range +20° to −200 °C. was covered. In the case of carbon dioxide the range was limited by its properties to +20 to −95 °C. As the temperature coefficient of the viscosity of gases is of particular interest from a theoretical point of view, as far as the kinetic theory is concerned, the data obtained may be considered important. Incidentally, Maxwell's law concerning the effect of pressure on viscosity was confirmed at the lowest temperature range hitherto investigated.


Tribologia ◽  
2018 ◽  
Vol 282 (6) ◽  
pp. 71-78
Author(s):  
Krzysztof KASZA ◽  
Łukasz MATYSIAK ◽  
Artur KRÓL

Heat generation and dissipation in dry polymer bearings are important aspects in their design and operation, because the overheating may lead to fast wear or product damage. The estimation of the maximum temperature under defined load conditions is crucial, but it is also a challenging task. Firstly, it is difficult to measure temperature directly at the contact surface between the bearing and the shaft. Secondly, thermocouples that are commonly used as the temperature sensors might create measurement errors. The work presented in this paper utilizes the numerical model of a polymer bearing for the analysis of the internal temperature field. The model is validated with use of experimental data; and, in order to mitigate the measurement errors of the thermocouple sensor, their geometry and properties are included in the simulation model. The achieved agreement between simulation and experimental temperatures is 10% on average, and it is judged that the numerical model may be applied for thermal analysis of the polymer bearing. The obtained results confirm the influence of the thermocouples with metallic sheaths on the temperature distribution inside the tested polymer bearing. It is shown that the value of the measurement errors depends on the layout of thermocouples and might be significantly reduced by their proper arrangement. It is believed that the presented approach for the analysis of thermal performance of dry polymer bearings might be applied to similar cases, which are characterized by large temperature gradients and require temperature sensors, that are made of the materials of high thermal conductivity.


Sign in / Sign up

Export Citation Format

Share Document