A Study of Creep Damage Rules

1972 ◽  
Vol 94 (3) ◽  
pp. 533-541 ◽  
Author(s):  
M. M. Abo El Ata ◽  
I. Finnie

A brief review is given of the literature on damage accumulation during creep and inadequacies in our present understanding are pointed out. By drawing on recent studies of the processes involved in creep-rupture, it is suggested that a new criterion for creep-damage accumulation may be proposed, which is more general than existing approaches. This involves the consideration of both the initiation and propagation phases of fracture, and it is seen that in some cases, strengthening rather than weakening may result from prior loadings. Experimental results are cited in support of these observations.

Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 404
Author(s):  
Adam Tomczyk ◽  
Andrzej Seweryn

The paper is focused on creep-rupture tests of samples made of the 2024 alloy in the T3511 temper under uniaxial tensile stress conditions. The basic characteristics of the material at the temperatures of 100, 200 and 300 °C were determined, such as the Young’s modulus E, yield point σy, ultimate tensile strength σc and parameters K and n of the Ramberg–Osgood equation. Creep tests were performed for several different levels of nominal axial stress (load) at each temperature. It was observed that in the process of creep to failure at 200 and 300 °C, as the stress decreases, the creep time increases and, at the same time, the strain at rupture increases. However, such a regularity is maintained until a certain transition stress value σt is reached. Reducing the stress below this value results in a decreased value of the strain at rupture. A simple model of creep damage accumulation was proposed for the stress range above the transient value. In this model, the increase in the isotropic damage state variable was made dependent on the value of axial stress and the increase in plastic axial strain. Using the results of experimental creep-rupture tests and the failure condition, the parameters of the proposed model were determined. The surface of fractures obtained in the creep tests with the use of SEM technology was also analyzed.


The creep rupture of circumferentially notched, circular tension bars which are subjected to constant load for long periods at constant temperature is studied both experimentally and by using a time-iterative numerical procedure which describes the formation and growth of creep damage as a field quantity. The procedure models the development of failed or cracked regions of material due to the growth and linkage of grain boundary defects. Close agreement is shown between experimental and theoretical values of the representative rupture stress, of the zones of creep damage and of the development of cracks for circular (Bridgman, Studies in large plastic flow and fracture , New York: McGraw-Hill (1952)) and British Standard notched specimens (B.S. no. 3500 (1969)). The minimum section of the circular notch is shown to be subjected to relatively uniform states of multi-axial stress and damage while the B.S. notch is shown to be subjected to non-uniform stress and damage fields in which single cracks grow through relatively undamaged material. The latter situation is shown to be analogous to the growth of a discrete crack in a lightly damaged continuum. The continuum damage mechanics theory presented here is shown to be capable of accurately predicting these extreme types of behaviour.


Author(s):  
Smith Salifu ◽  
Dawood A. Desai ◽  
Schalk Kok

The creep response and stress relaxation of X20 CrMoV12-1 steam piping under diverse operating conditions were simulated using finite element analysis (FEA) code, Abaqus alongside fe-safe/Turbolife software. In the study, steady-state creep and creep analysis characterized by 24 hours daily cycle consisting of a total of 6 hours peak, 4 hours transient and 14 hours off-peak period was considered. Modified hyperbolic sine creep model used in the analysis was implemented in Abaqus via a special creep user-subroutine to compute the stress relaxation and creep behaviour, while the useful service life and creep damage was estimated using fe-safe/Turbolife. The optimum creep strain, stress, damage, and worst life were found at the intrados of the piping, with the steady-state analysis having a higher useful creep life and slower creep damage accumulation. Furthermore, slower stress relaxation with faster damage accumulation was observed in the analysis involving cycles. Finally, a good agreement was obtained between the analytical calculated and simulated rates of the piping.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Huaibao Chu ◽  
Xiaolin Yang ◽  
Shuanjie Li ◽  
Weimin Liang

The propagation and attenuation rule of blasting vibration wave parameters is the most important foundation of blasting vibration prediction and control. In this work, we pay more attention to the influence of the damage accumulation effect on the propagation and attenuation rule of vibration wave parameters. A blasting damage accumulation experiment was carried out, the ultrasonic wave velocity of the specimens was measured, and the damage value was calculated during the experiment. The blasting vibration wave was monitored on the surface of the specimens, and its energy was calculated by using the sym8 wavelet basis function. The experimental results showed that with the increase in the number of blasts, the damage continues to increase; however, the vibration velocity and the main frequency decrease continuously, the unfocused vibration wave energy in the zone near to the blasting source is rapidly concentrated in the low-frequency band (frequency bands 1 to 3), and the energy is further concentrated in the low-frequency band in the intermediate zone and zone far from the blasting source. There is a distortion process in which the vibration velocity and the main frequency increase slightly and the energy of the blasting vibration wave converges to the high-frequency band (the 5th band) before the sudden unstable fracture failure of the specimens. The experimental results indicate that the prediction and evaluation of blasting vibration should consider the variation rule of blasting vibration wave parameters synthetically based on the cumulative damage effect, and it is not safe to use only one fixed vibration control standard for the whole blasting operation.


1972 ◽  
Vol 1 (13) ◽  
pp. 62 ◽  
Author(s):  
H. Raman

Laboratory studies were conducted in an attempt to find out a relationship between beach and wave characteristics when equilibrium conditions are reached in beach wave interaction for the simple case of regular waves acting normal to the beach. Experimental results indicate the existence of stable points on beach profiles where the coordinates of the profile do not change with time when waves of constant characteristics act on the beach. Emperical relationship between the wave and beach properties are proposed. A new criterion for classification of beach profiles is indicated.


Metals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 639 ◽  
Author(s):  
Dezheng Liu ◽  
Yan Li ◽  
Xiangdong Xie ◽  
Guijie Liang ◽  
Jing Zhao

Creep damage is one of the main failure mechanisms of high Cr heat-resistant steel in power plants. Due to the complex changes of stress, strain, and damage at the tip of a creep crack with time, it is difficult to accurately evaluate the effects of residual stress on the creep rupture mechanism. In this study, two levels of residual stress were introduced in P92 high Cr alloy specimens using the local out-of-plane compression approach. The specimens were then subjected to thermal exposure at the temperature of 650 °C for accelerated creep tests. The chemical composition of P92 specimens was obtained using an FLS980-stm Edinburgh fluorescence spectrometer. Then, the constitutive coupling relation between the temperature and material intrinsic flow stress was established based on the Gibbs free energy principle. The effects of prior residual stress on the creep rupture mechanism were investigated by the finite element method (FEM) and experimental method. A comparison of the experimental and simulated results demonstrates that the effect of prior residual stress on the propagation of micro-cracks and the creep rupture time is significant. In sum, the transgranular fracture and the intergranular fracture can be observed in micrographs when the value of prior residual stress exceeds and is less than the material intrinsic flow stress, respectively.


Sign in / Sign up

Export Citation Format

Share Document