Creep-rupture models and experimental results for polyester rope

Author(s):  
E.W. Huntley ◽  
A.S. Whitehill
1975 ◽  
Vol 97 (4) ◽  
pp. 338-342 ◽  
Author(s):  
F. V. Ellis ◽  
G. L. Wire ◽  
Che-Yu Li

The concept of mechanical equation of state is reviewed based on experimental results on 1100 aluminum alloy. It is applied to describe the effects of cold work on creep and creep rupture properties of this material.


1972 ◽  
Vol 94 (3) ◽  
pp. 533-541 ◽  
Author(s):  
M. M. Abo El Ata ◽  
I. Finnie

A brief review is given of the literature on damage accumulation during creep and inadequacies in our present understanding are pointed out. By drawing on recent studies of the processes involved in creep-rupture, it is suggested that a new criterion for creep-damage accumulation may be proposed, which is more general than existing approaches. This involves the consideration of both the initiation and propagation phases of fracture, and it is seen that in some cases, strengthening rather than weakening may result from prior loadings. Experimental results are cited in support of these observations.


2012 ◽  
Vol 476-478 ◽  
pp. 346-350
Author(s):  
Xue Xia Xu ◽  
Jie Ouyang ◽  
Yan Ting Feng ◽  
Xiao Guang Niu ◽  
Hao Ke ◽  
...  

Creep-rupture properties of modified 9Cr-1Mo steel with 140~150HB low hardness were studied. Results showed that the creep-rupture properties of the experimental steel deteriorate badly and decreased with experimental temperature increasing. The life evaluation was carried out based on the experimental results, that provides guidance for material evaluation and operation supervision.


2020 ◽  
Vol 1002 ◽  
pp. 95-103
Author(s):  
Orhan Sabah Abdullah ◽  
Shaker S. Hassan ◽  
Ahmed N. Al-Khazraji

Generally, thermoplastic polymers due to their viscoelastic behavior tend to appear creep deformation at low temperature compared to metals; this continuous creep deformation caused irregular shapes with time and resultant unstable dimensional parts. Therefore, the investigation of creep behavior in thermoplastic polymers must be considered as an essential requirement in the design process. This work exanimated the creep rupture behavior for Polyamide 6.6 and their composites which content of 1%MWCNTS or 30 short carbon fibers under variant applied stresses and temperatures, as well as, to create analytical model to the obtained results Findley power law model was employed for this purpose with a comprehensive verification to their compatibility to the experimental results. The results appeared that the addition of reinforced materials and decreasing applied stresses and temperatures will cause an enhancement in creep resistance by increasing rupture time and decreasing the minimum creep rate values. On the other hand, using of Findley power law model gives a good agreement to the obtained experimental results.


1988 ◽  
Vol 102 ◽  
pp. 357-360
Author(s):  
J.C. Gauthier ◽  
J.P. Geindre ◽  
P. Monier ◽  
C. Chenais-Popovics ◽  
N. Tragin ◽  
...  

AbstractIn order to achieve a nickel-like X ray laser scheme we need a tool to determine the parameters which characterise the high-Z plasma. The aim of this work is to study gold laser plasmas and to compare experimental results to a collisional-radiative model which describes nickel-like ions. The electronic temperature and density are measured by the emission of an aluminium tracer. They are compared to the predictions of the nickel-like model for pure gold. The results show that the density and temperature can be estimated in a pure gold plasma.


Author(s):  
Y. Harada ◽  
T. Goto ◽  
H. Koike ◽  
T. Someya

Since phase contrasts of STEM images, that is, Fresnel diffraction fringes or lattice images, manifest themselves in field emission scanning microscopy, the mechanism for image formation in the STEM mode has been investigated and compared with that in CTEM mode, resulting in the theory of reciprocity. It reveals that contrast in STEM images exhibits the same properties as contrast in CTEM images. However, it appears that the validity of the reciprocity theory, especially on the details of phase contrast, has not yet been fully proven by the experiments. In this work, we shall investigate the phase contrast images obtained in both the STEM and CTEM modes of a field emission microscope (100kV), and evaluate the validity of the reciprocity theory by comparing the experimental results.


Author(s):  
B. J. Hockey ◽  
S. M. Wiederhorn

ATEM has been used to characterize three different silicon nitride materials after tensile creep in air at 1200 to 1400° C. In Part I, the microstructures and microstructural changes that occur during testing were described, and consistent with that description the designations and sintering aids for these materials were: W/YAS, a SiC whisker reinforced Si3N4 processed with yttria (6w/o) and alumina (1.5w/o); YAS, Si3N4 processed with yttria (6 w/o) and alumina (1.5w/o); and YS, Si3N4 processed with yttria (4.0 w/o). This paper, Part II, addresses the interfacial cavitation processes that occur in these materials and which are ultimately responsible for creep rupture.


Author(s):  
A. Ourmazd ◽  
G.R. Booker ◽  
C.J. Humphreys

A (111) phosphorus-doped Si specimen, thinned to give a TEM foil of thickness ∼ 150nm, contained a dislocation network lying on the (111) plane. The dislocation lines were along the three <211> directions and their total Burgers vectors,ḇt, were of the type , each dislocation being of edge character. TEM examination under proper weak-beam conditions seemed initially to show the standard contrast behaviour for such dislocations, indicating some dislocation segments were undissociated (contrast A), while other segments were dissociated to give two Shockley partials separated by approximately 6nm (contrast B) . A more detailed examination, however, revealed that some segments exhibited a third and anomalous contrast behaviour (contrast C), interpreted here as being due to a new dissociation not previously reported. Experimental results obtained for a dislocation along [211] with for the six <220> type reflections using (g,5g) weak-beam conditions are summarised in the table below, together with the relevant values.


Author(s):  
Scott Lordi

Vicinal Si (001) surfaces are interesting because they are good substrates for the growth of III-V semiconductors. Spots in RHEED patterns from vicinal surfaces are split due to scattering from ordered step arrays and this splitting can be used to determine the misorientation angle, using kinematic arguments. Kinematic theory is generally regarded to be inadequate for the calculation of RHEED intensities; however, only a few dynamical RHEED simulations have been attempted for vicinal surfaces. The multislice formulation of Cowley and Moodie with a recently developed edge patching method was used to calculate RHEED patterns from vicinal Si (001) surfaces. The calculated patterns are qualitatively similar to published experimental results and the positions of the split spots quantitatively agree with kinematic calculations.RHEED patterns were calculated for unreconstructed (bulk terminated) Si (001) surfaces misoriented towards [110] ,with an energy of 15 keV, at an incident angle of 36.63 mrad ([004] bragg condition), and a beam azimuth of [110] (perpendicular to the step edges) and the incident beam pointed down the step staircase.


Sign in / Sign up

Export Citation Format

Share Document