Process Control Experience and a Self-Tuning Method for a Discrete-Time, Finite Time Settling Controller/Observer

1977 ◽  
Vol 99 (3) ◽  
pp. 209-211 ◽  
Author(s):  
D. M. Auslander ◽  
M. Tomizuka ◽  
Y. Takahashi

A self-tuning method is described for a simple discrete-time control algorithm presented in a previous paper. With self-tuning, the algorithm is a candidate for a new class of single-loop controllers that would be considerably more convenient to use than the present analog PID controllers. Experimental results are presented indicating the applicability of the tuning and control algorithms to typical, nonideal processes.

Author(s):  
Ahmed Okasha ◽  
Scott A. Bortoff

Abstract In this paper we derive a dynamic model of the delta robot and two formulations of the manipulator Jacobian that comprise a system of singularity-free, index-one differential algebraic equations that is well-suited for model-based control design and computer simulation. One of the Jacobians is intended for time-domain simulation, while the other is for use in discrete-time control algorithms. The model is well-posed and numerically well-conditioned throughout the workspace, including at kinematic singularities. We use the model to derive an approximate feedback linearizing control algorithm that can be used for both trajectory tracking and impedance control, enabling some assembly tasks involving contact and collisions. The model and control algorithms are realized in the open-source Modelica language, and a Modelica-based software architecture is described that allows for a seamless development process from mathematical derivation of control algorithms, to desktop simulation, and finally to laboratory-scale experimental testing without the need to recode any aspect of the control algorithm. Simulation and experimental results are provided.


2019 ◽  
Vol 17 (1) ◽  
pp. 716-727
Author(s):  
Leipo Liu ◽  
Hao Xing ◽  
Xiangyang Cao ◽  
Xiushan Cai ◽  
Zhumu Fu

Abstract This paper considers the nonfragile observer-based guaranteed cost finite-time control of discrete-time positive impulsive switched systems(DPISS). Firstly, the positive observer and nonfragile positive observer are designed to estimate the actual state of the underlying systems, respectively. Secondly, by using the average dwell time(ADT) approach and multiple linear co-positive Lyapunov function (MLCLF), two guaranteed cost finite-time controller are designed and sufficient conditions are obtained to guarantee the corresponding closed-loop systems are guaranteed cost finite-time stability(GCFTS). Such conditions can be solved by linear programming. Finally, a numerical example is provided to show the effectiveness of the proposed method.


2017 ◽  
Vol 37 (2) ◽  
pp. 186-199 ◽  
Author(s):  
Zhiqiang Yu ◽  
Qing Shi ◽  
Huaping Wang ◽  
Ning Yu ◽  
Qiang Huang ◽  
...  

Purpose The purpose of this paper is to present state-of-the-art approaches for precise operation of a robotic manipulator on a macro- to micro/nanoscale. Design/methodology/approach This paper first briefly discussed fundamental issues associated with precise operation of a robotic manipulator on a macro- to micro/nanoscale. Second, this paper described and compared the characteristics of basic components (i.e. mechanical parts, actuators, sensors and control algorithm) of the robotic manipulator. Specifically, commonly used mechanisms of the manipulator were classified and analyzed. In addition, intuitive meaning and applications of its actuator explained and compared in details. Moreover, related research studies on general control algorithm and visual control that are used in a robotic manipulator to achieve precise operation have also been discussed. Findings Remarkable achievements in dexterous mechanical design, excellent actuators, accurate perception, optimized control algorithms, etc., have been made in precise operations of a robotic manipulator. Precise operation is critical for dealing with objects which need to be manufactured, modified and assembled. The operational accuracy is directly affected by the performance of mechanical design, actuators, sensors and control algorithms. Therefore, this paper provides a categorization showing the fundamental concepts and applications of these characteristics. Originality/value This paper presents a categorization of the mechanical design, actuators, sensors and control algorithms of robotic manipulators in the macro- to micro/nanofield for precise operation.


2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Junjie Zhao ◽  
Jing Wang ◽  
Bo Li

We deal with the finite-time control problem for discrete-time Markov jump systems subject to saturating actuators. A finite-state Markovian process is given to govern the transition of the jumping parameters. A controller designed for unconstrained systems combined with a dynamic antiwindup compensator is given to guarantee that the resulting system is mean-square locally asymptotically finite-time stabilizable. The proposed conditions allow us to find dynamic anti-windup compensator which stabilize the closed-loop systems in the finite-time sense. All these conditions can be expressed in the form of linear matrix inequalities and therefore are numerically tractable, as shown in the example included in the paper.


2016 ◽  
Vol 2016 ◽  
pp. 1-12
Author(s):  
Guoliang Wang ◽  
Bo Feng

The finite-time control problem of discrete-time delayed Markovian jump systems with partially delayed actuator saturation is considered by a mode-dependent parameter approach. Different from the traditionally saturated actuators, a kind of saturated actuator being partially delay-dependent is firstly proposed, where both nondelay and delay states are included and occur asynchronously. Moreover, the probability distributions of such two terms are described by the Bernoulli variable and are taken into account in the controller design. Sufficient conditions for the existence of the desired controller are presented with LMIs. Finally, a numerical example is provided to show the effectiveness and superiority of the obtained results.


1983 ◽  
Vol 37 (4) ◽  
pp. 855-860 ◽  
Author(s):  
WEI-SONG LIN ◽  
TE-SON KUO ◽  
GEORGE J. THALER

2011 ◽  
Vol 225-226 ◽  
pp. 428-432 ◽  
Author(s):  
Cai Xia Liu ◽  
Ying Qi Zhang

This paper deals with finite-time control problem of a class of fuzzy discrete-time system with time-varying norm-bounded disturbance. Applying the Lyapunov function theory and matrix inequalities, a sufficient condition is obtained for robust finite-time stability and the fuzzy system satisfies a prescribed level for the effect of the disturbance input on the controlled output.


Sign in / Sign up

Export Citation Format

Share Document