How to achieve precise operation of a robotic manipulator on a macro to micro/nano scale

2017 ◽  
Vol 37 (2) ◽  
pp. 186-199 ◽  
Author(s):  
Zhiqiang Yu ◽  
Qing Shi ◽  
Huaping Wang ◽  
Ning Yu ◽  
Qiang Huang ◽  
...  

Purpose The purpose of this paper is to present state-of-the-art approaches for precise operation of a robotic manipulator on a macro- to micro/nanoscale. Design/methodology/approach This paper first briefly discussed fundamental issues associated with precise operation of a robotic manipulator on a macro- to micro/nanoscale. Second, this paper described and compared the characteristics of basic components (i.e. mechanical parts, actuators, sensors and control algorithm) of the robotic manipulator. Specifically, commonly used mechanisms of the manipulator were classified and analyzed. In addition, intuitive meaning and applications of its actuator explained and compared in details. Moreover, related research studies on general control algorithm and visual control that are used in a robotic manipulator to achieve precise operation have also been discussed. Findings Remarkable achievements in dexterous mechanical design, excellent actuators, accurate perception, optimized control algorithms, etc., have been made in precise operations of a robotic manipulator. Precise operation is critical for dealing with objects which need to be manufactured, modified and assembled. The operational accuracy is directly affected by the performance of mechanical design, actuators, sensors and control algorithms. Therefore, this paper provides a categorization showing the fundamental concepts and applications of these characteristics. Originality/value This paper presents a categorization of the mechanical design, actuators, sensors and control algorithms of robotic manipulators in the macro- to micro/nanofield for precise operation.

2016 ◽  
Vol 4 (2) ◽  
pp. 1-16
Author(s):  
Ahmed S. Khusheef

 A quadrotor is a four-rotor aircraft capable of vertical take-off and landing, hovering, forward flight, and having great maneuverability. Its platform can be made in a small size make it convenient for indoor applications as well as for outdoor uses. In model there are four input forces that are essentially the thrust provided by each propeller attached to each motor with a fixed angle. The quadrotor is basically considered an unstable system because of the aerodynamic effects; consequently, a close-loop control system is required to achieve stability and autonomy. Such system must enable the quadrotor to reach the desired attitude as fast as possible without any steady state error. In this paper, an optimal controller is designed based on a Proportional Integral Derivative (PID) control method to obtain stability in flying the quadrotor. The dynamic model of this vehicle will be also explained by using Euler-Newton method. The mechanical design was performed along with the design of the controlling algorithm. Matlab Simulink was used to test and analyze the performance of the proposed control strategy. The experimental results on the quadrotor demonstrated the effectiveness of the methodology used.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 282
Author(s):  
Jarosław Knaga ◽  
Stanisław Lis ◽  
Sławomir Kurpaska ◽  
Piotr Łyszczarz ◽  
Marcin Tomasik

In this work, the possibility of limiting energy consumption in the manufacturing process of bioethanol to obtain biofuel was analysed. For this purpose, a control algorithm has been optimised while retaining the good quality of the control signals. New in this study is the correlation of the control algorithm not only with the signal’s quality, but also with the energy consumption in such an energy-intensive process as rectification. The rectification process in a periodic production system has been researched. The process was modelled on a test station with the distillation mixture capacity of 25 dm3. For the optimization, the following control algorithms have been applied: relay, PID and PID after modification to I-PD. The simulation was carried out on a transfer function model of the plant that has been verified on a real object, a rectification column. The simulations of energy consumption and control signal’s quality have been carried out in the Matlab®-Simulink environment after implementing the model of the research subject and control algorithms. In the simulation process, an interference signal with an amplitude of 3% and frequency of 2 mHz was used. The executed analyses of the control signal quality and the influence of the control algorithm on the energy consumption has shown some essential mutual relationships. The lowest energy consumption in the rectification process can be achieved using the I-PD controller—however, the signal quality deteriorates. The energy savings are slightly lower while using the PID controller, but the control signal quality improves significantly. From a practical point of view, in the considered problem the best control solution is the classic PID controller—the obtained energy effect was only slightly lower while retaining the good quality of the control signals.


Author(s):  
Kwangjin Han ◽  
Kunsoo Huh ◽  
Jaehyung Chun ◽  
Myoungjune Kim ◽  
Joogon Kim

Brake-by-wire (BBW) systems can be used for enhanced safety braking of intelligent vehicles and also for environmentally friendly vehicles such as hybrid electric vehicles (HEVs) and electric vehicles (EVs). The electronic wedge brake (EWB) is one of the brake-by-wire systems with a self-energizing effect. The EWB is faster than the conventional hydraulic brake and requires only about one-tenth the power to operate. However, the EWB can be unstable unless controlled properly since the self-energizing effect can unintentionally lock up the vehicle’s wheels. In addition, the self-energizing effect is very sensitive to environment and parametric variances, e.g. friction, temperature, speed, load, etc. In this paper, two control algorithms for the EWB are introduced and compared each other in performance. The performance of the proposed control algorithms is verified in simulations.


Author(s):  
Jon Bjørnø ◽  
Hans-Martin Heyn ◽  
Roger Skjetne ◽  
Andreas R. Dahl ◽  
Preben Frederich

A thruster-assisted position mooring (TAPM) system includes different control functions for stationkeeping and motion damping for a moored offshore vessel with assist from thrusters. It consists of a conventional mooring system and a dynamic positioning (DP) system. The thrusters are used to provide damping and some restoring to the vessel motion and compensate if line breakage occurs. The mooring system absorbs the main loads to keep the vessel in place. This paper presents a complete modeling, parameter identification, and control design for a 1:90 scaled TAPM model vessel. The numerical values for the different model parameters are identified from towing tests. State-of-the-art TAPM control algorithms have been tested on the vessel in the Marine Control Laboratory (MC Lab), to see the behavior resulting from the different control algorithms. The presented experiments focus on the setpoint chasing algorithm, where the position setpoint slowly moves to the equilibrium position where the environmental loads are balanced by the mooring loads. This avoids conflicts between the mooring system and the control actions. If the environmental loads are too large so that the setpoint exceeds a user-defined safety radius, the setpoint is set to this radius and thruster forces grow to support the mooring system in counteracting the environmental loads to avoid line breakage. The experiments show that the vessel and setpoint chasing control algorithm behaves as expected, minimizing thruster usage and maximizing utilization of mooring system.


Author(s):  
Jernej Černelič ◽  
Robert Brezovnik ◽  
Primož Sukič ◽  
Martin Petrun

Purpose This paper aims to present two hysteresis-control algorithms designed for medium-frequency, direct-current, resistance-spot-welding (MFDC RSW) systems. The first proposed control algorithm (MSCHC) eliminates the short switching cycles that can occur when using the existing hysteresis-control algorithms. This control minimises the number of switching cycles that are needed to generate the selected welding current. The welding-current ripple can be high when using this control algorithm. Therefore, a second algorithm (HCRR) is presented that reduces the welding-current ripple by half. Design/methodology/approach The proposed hysteresis controllers consist of the transformer’s magnetic-flux-density hysteresis regulator and a welding-current hysteresis regulator. Therefore, the welding current must be measured and the saturation of the iron core must be detected. The proposed hysteresis controller supplies the inverter with the signals needed to generate the supply voltage for the RSW transformer, which then generates the selected welding current. Findings The proposed MSCHC algorithm produces the smallest possible number of switching cycles needed to generate the selected welding current. The high welding-current ripple can be reduced if the number of switching cycles is increased. The observed number of switching cycles and the welding-current ripple change if the welding resistance and/or inductance change. Originality/value The number of switching cycles can be minimised when using the first proposed control algorithm (MSCHC), and so the switching power losses can be minimised. If the welding-current ripple produced by the first control algorithm is unacceptable, the second control algorithm (HCRR) can reduce it by increasing the number of switching cycles.


Author(s):  
Ahmed Okasha ◽  
Scott A. Bortoff

Abstract In this paper we derive a dynamic model of the delta robot and two formulations of the manipulator Jacobian that comprise a system of singularity-free, index-one differential algebraic equations that is well-suited for model-based control design and computer simulation. One of the Jacobians is intended for time-domain simulation, while the other is for use in discrete-time control algorithms. The model is well-posed and numerically well-conditioned throughout the workspace, including at kinematic singularities. We use the model to derive an approximate feedback linearizing control algorithm that can be used for both trajectory tracking and impedance control, enabling some assembly tasks involving contact and collisions. The model and control algorithms are realized in the open-source Modelica language, and a Modelica-based software architecture is described that allows for a seamless development process from mathematical derivation of control algorithms, to desktop simulation, and finally to laboratory-scale experimental testing without the need to recode any aspect of the control algorithm. Simulation and experimental results are provided.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Megha G. Krishnan ◽  
Abhilash T. Vijayan ◽  
Ashok S.

Purpose Real-time implementation of sophisticated algorithms on robotic systems demands a rewarding interface between hardware and software components. Individual robot manufacturers have dedicated controllers and languages. However, robot operation would require either the knowledge of additional software or expensive add-on installations for effective communication between the robot controller and the computation software. This paper aims to present a novel method of interfacing the commercial robot controllers with most widely used simulation platform, e.g. MATLAB in real-time with a demonstration of visual predictive controller. Design/methodology/approach A remote personal computer (PC), running MATLAB, is connected with the IRC5 controller of an ABB robotic arm through the File Transfer Protocol (FTP). FTP server on the IRC5 responds to a request from an FTP client (MATLAB) on a remote computer. MATLAB provides the basic platform for programming and control algorithm development. The controlled output is transferred to the robot controller through Ethernet port as files and, thereby, the proposed scheme ensures connection and control of the robot using the control algorithms developed by the researchers without the additional cost of buying add-on packages or mastering vendor-specific programming languages. Findings New control strategies and contrivances can be developed with numerous conditions and constraints in simulation platforms. When the results are to be implemented in real-time systems, the proposed method helps to establish a simple, fast and cost-effective communication with commercial robot controllers for validating the real-time performance of the developed control algorithm. Practical implications The proposed method is used for real-time implementation of visual servo control with predictive controller, for accurate pick-and-place application with different initial conditions. The same strategy has been proven effective in supervisory control using two cameras and artificial neural network-based visual control of robotic manipulators. Originality/value This paper elaborates a real-time example using visual servoing for researchers working with industrial robots, enabling them to understand and explore the possibilities of robot communication.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Uzeyir Kement ◽  
Sinan Çavuşoğlu ◽  
Bülent Demirağ ◽  
Yakup Durmaz ◽  
Aziz Bükey

PurposeThis study analyzes the desires and behavioral intentions of tourists within the scope of perception of COVID-19 and nonpharmaceutical intervention during the COVID-19 pandemic.Design/methodology/approachThe population of the research consists of people on a touristic trip in Turkey. Because of the pandemic, questionnaire data was collected online between 25 April and 15 May 2020. The research was carried out with 712 questionnaire forms. The data obtained were analyzed by structural equation modeling in the SM-PLS statistics program.FindingsPerception of COVID-19 significantly and positively affects NPI and negatively and significantly affects desire. Perception of COVID-19 and NPI do not have a significant positive/negative effect on behavioral intention. Finally, desire has a significantly positive effect on behavioral intention.Research limitations/implicationsSince the research has limitations in terms of time, cost, accessibility and control difficulties, the entire population could not be reached. The study was carried out with only 712 tourists traveling in Turkey.Practical implicationsThe obtained results will impact, particularly the decisions taken in Turkey's tourism sector. Moreover, if tourism companies know the decisions of the consumers during the pandemic process, they can use the appropriate marketing techniques.Social implicationsThe result may give an idea about the decision-making process of the consumers on traveling during the pandemic. In this way, psychologically different research can be developed.Originality/valueThere has not been any study made in Turkey that investigated the context of the current research model. Therefore, this research is original.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Tomasz Rogalski ◽  
Paweł Rzucidło ◽  
Stanisław Noga ◽  
Jacek Prusik

Purpose The purpose of this paper is to present the idea of automatic flight control algorithms capable of performing an Immelmann turn manoeuvre automatically. This is a case of a manoeuvre far removed from so-called standard flight. The character of this manoeuvre and the range of changes in the aircraft flight parameters restrict the application of standard control algorithms. Furthermore, the possibility of acquiring full and detailed information about the aircraft’s flight parameters is limited in such cases. This paper seeks to analyse an alternative solution that can be applied in some specific cases. Design/methodology/approach This paper uses theoretical discussion and breakdowns to create the basics for development of structures of control algorithms. A simplified analytical approach was applied to tune regulators and the results of the research were verified in a series of software-in-the loop computer simulations. Findings The structure of the control system enabling aerobatic flight (with the Immelmann turn as the selected example) was identified and the method for tuning the regulators is also presented. Practical implications It could serve as a foundation for autopilots working in non-conventional flight states and aircraft automatic recovery systems. Originality/value This paper presents the author’s original approach to aircraft automatic control when high control precision is not the priority and not all flight parameters can be precisely measured.


Author(s):  
Н.Р. Антропов ◽  
Е.Д. Агафонов

В работе рассматривается задача адаптивной идентификации и управления нелинейными динамическими объектами. Предлагается новый рекуррентный ядерный алгоритм дуального управления с использованием идентификатора. Приводятся результаты численного исследования, подтверждающие эффективность предложенного алгоритма. The paper considers adaptive identification and control problem of nonlinear dynamic processes. For solution of the problem new recursive identification and control algorithms are proposed. The paper presents the results of a numerical study illustrating the performance of the proposed recursive identification and control algorithms.


Sign in / Sign up

Export Citation Format

Share Document