A Numerical Analysis of Heat Transfer to Fluids Near the Thermodynamic Critical Point Including the Thermal Entrance Region

1976 ◽  
Vol 98 (4) ◽  
pp. 609-615 ◽  
Author(s):  
N. M. Schnurr ◽  
V. S. Sastry ◽  
A. B. Shapiro

A two-dimensional numerical method has been developed to predict heat transfer to near critical fluids in turbulent flow through circular tubes. The analysis is applicable to the thermal entry region as well as fully developed flows. Agreement with experimental data for water at 31.0 MN/m2 is quite good. A correlation in the form of the heat flux parameter of Goldmann was found to be satisfactory for water at that pressure. Results are presented in graphical form which apply to a wide range of heat fluxes, mass velocities, and tube diameters. Preliminary results in the entrance region show that film coefficients remain well above the corresponding fully developed values for a larger distance downstream than would be the case with a constant property fluid. This effect becomes more pronounced as the heat flux is increased.

1977 ◽  
Vol 99 (4) ◽  
pp. 580-585 ◽  
Author(s):  
N. M. Schnurr

A numerical method is used to calculate heat transfer to supercritical helium in turbulent flow through circular tubes with constant wall heat flux. Comparisons of numerical predictions to experimental data showed good agreement. Numerical results were obtained for pressures from 2.5 to 20 atm and these results were correlated in terms of a heat flux parameter. A preliminary study of heat transfer in the thermal entry region showed the increase of the film coefficient to be larger for higher heat fluxes and for cases where the inlet bulk enthalpy was above the pseudocritical value.


1968 ◽  
Vol 90 (2) ◽  
pp. 191-198 ◽  
Author(s):  
R. D. Haberstroh ◽  
L. V. Baldwin

The temperature profiles and heat-transfer coefficients are predicted for fully developed turbulent pipe flow with constant wall heat flux for a wide range of Prandtl and Reynolds numbers. The basis for integrating the energy equation comes from a continuously differentiable velocity profile which fits the physical boundary conditions and is a rigorous (though not necessarily unique) solution of the Reynolds equations. This velocity profile is the semiempirical relation proposed by S. I. Pai, reference [12]. The assumptions are those of steady, incompressible, constant-property, fully developed, turbulent flow of Newtonian fluids in smooth, circular pipes with constant heat flux at the wall. The ratio of the turbulent thermal diffusivity to the turbulent momentum diffusivity is taken to be unity. The thermal quantities are obtained by numerical integration of the energy equation, and they are presented as curves and tables. A compact formula for the Nusselt number is given for a wide range of Reynolds and Prandtl numbers. The results degenerate identically to the case of laminar flow. The heat-transfer calculation requires neither adjustable factors nor data-fitting beyond the empirical constants in the momentum equation; thus this analysis constitutes a heat-transfer prediction to be tested against heat-transfer data.


1999 ◽  
Vol 121 (3) ◽  
pp. 592-597 ◽  
Author(s):  
J. E. Leland ◽  
M. R. Pais

An experimental investigation was performed to determine the heat transfer rates for an impinging free-surface axisymmetric jet of lubricating oil for a wide range of Prandtl numbers (48 to 445) and for conditions of highly varying properties (viscosity ratios up to 14) in the flowing film. Heat transfer coefficients were obtained for jet Reynolds numbers from 109 to 8592, nozzle orifice diameters of 0.51, 0.84 and 1.70 mm and a heated surface diameter of 12.95 mm. The effect of nozzle to surface spacing (1 to 8.5 mm), was also investigated. Viscous dissipation was found to have an effect at low heat fluxes. Distinct heat transfer regimes were identified for initially laminar and turbulent jets. The data show that existing constant property correlations underestimate the heat transfer coefficient by more than 100 percent as the wall to fluid temperature difference increases. Over 700 data points were used to generate Nusselt number correlations which satisfactorily account for the highly varying properties with a mean absolute error of less than ten percent.


Author(s):  
Syed Zakrea ◽  
Siddiq Ali ◽  
Mohammed Ayaz Ahmed ◽  
M. Anwarullah

Experimental investigation is conducted to examine the characteristics of forced convective heat transfer from electronic components, subjected to a confined impinging circular jet of Air and CO2. Parameters such as Heat transfer coefficient, Jet velocities, Nozzle-to-chip spacing (aspect ratio) (H/d) have been studied. Nozzle diameter ranged from 2mm to 8mm. Local heat flux measurements are made with different diameters of jet in the range of Reynolds numbers from 5,000 to 44,000 for CO2 and 2,500 to 23,000 for air. H/d is varied from 3 to 45 for both air and CO2. Variations both in the local heat transfer coefficient and Nusselt number are determined as function of Re. Variations of average Nusselt number and local heat flux with time are obtained in a wide range of Re and H/d ratios. The results of the investigation are presented in graphical form and a comparative study of Air and CO2 as coolant is made.


CFD letters ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 13-26
Author(s):  
Amjad Ali Pasha ◽  
Meshal Nuwaym Al-Harbi ◽  
Surfarazhussain S. Halkarni ◽  
Nazrul Islam ◽  
D. Siva Krishna Reddy ◽  
...  

The dissipation of heat in tiny engineering systems can be achieved with fluid flow through micro pipes. They have the advantage of less volume to large surface ratio convective heat transfer. There are deep-rooted analytical relations for convective heat transfer available for fluid flow through macro size pipes. But differences exist between the convective heat transfer for fluid flow through macro and micro pipes. Therefore, there is a good scope of work in micro convection heat transfer to study the mechanism of fundamental flow physics. There have been studies with either constant heat flux wall boundary conditions or constant wall temperature boundary conditions with constant and variable property flows. In this article, first, the numerical simulations are validated with the experimental data for 2D axisymmetric conventional pipe with pipe diameter of 8 mm is taken with laminar, steady, and single-phase water flows with constant wall heat flux boundary condition of 1 W/cm2. The computed Nusselt number is compared to the experimental results at different Reynolds numbers of 1350, 1600 and 1700. In the next study, three-dimensional micropipe laminar flow is studied numerically using water with an inlet velocity of 3 m/s and pipe diameter of 100 µm. The mixed wall boundary conditions with upper half pipe surface subjecting to constant wall temperature of 313 K and lower half surface subjecting to 100 W/cm2 are used in the simulations. The focus of research would be to consider the effect of temperature-dependent properties like thermal conductivity, viscosity, specific heat, and density (a combined effect we call it as variable properties) on micro-pipe flow characteristics like Nusselt number at mixed wall boundary conditions and compare it with the constant property flows. The conventional pipe showed no significant difference with variable and constant property flows with different Reynolds numbers. On contrary the flow through 3D micropipe shows that the Nusselt number with variable property flows is less as compared to the constant property flows.


1989 ◽  
Vol 111 (3) ◽  
pp. 798-803 ◽  
Author(s):  
E. C. Shewen ◽  
K. G. T. Hollands ◽  
G. D. Raithby

Calorimetric methods for measuring surface heat flux use Joulean heating to keep the surface isothermal. This limits them to measuring the heat flux of surfaces that are hotter than their surroundings. Presented in this paper is a method whereby reversible Peltier effect heat transfer is used to maintain this isothermality, making it suitable for surfaces that are either hotter or colder than the surroundings. The paper outlines the theory for the method and describes physical models that have been constructed, calibrated, and tested. The tested physical models were found capable of measuring heat fluxes with an absolute accuracy of 1 percent over a wide range of temperature (5–50°C) and heat flux (15–500 W/m2), while maintaining isothermality to within 0.03 K. A drawback of the method is that it appears to be suited only for measuring the heat flux from thick metallic plates.


2019 ◽  
Vol 873 ◽  
pp. 646-687 ◽  
Author(s):  
Jezabel Curbelo ◽  
Lucia Duarte ◽  
Thierry Alboussière ◽  
Fabien Dubuffet ◽  
Stéphane Labrosse ◽  
...  

We developed a numerical method for the set of equations governing fully compressible convection in the limit of infinite Prandtl numbers. Reduced models have also been analysed, such as the anelastic approximation and the anelastic liquid approximation. The tests of our numerical schemes against self-consistent criteria have shown that our numerical simulations are consistent from the point of view of energy dissipation, heat transfer and entropy budget. The equation of state of an ideal gas has been considered in this work. Specific effects arising because of the compressibility of the fluid are studied, like the scaling of viscous dissipation and the scaling of the heat flux contribution due to the mechanical power exerted by viscous forces. We analysed the solutions obtained with each model (fully compressible model, anelastic and anelastic liquid approximations) in a wide range of dimensionless parameters and determined the errors induced by each approximation with respect to the fully compressible solutions. Based on a rationale on the development of the thermal boundary layers, we can explain reasonably well the differences between the fully compressible and anelastic models, in terms of both the heat transfer and viscous dissipation dependence on compressibility. This could be mostly an effect of density variations on thermal diffusivity. Based on the different forms of entropy balance between exact and anelastic models, we find that a necessary condition for convergence of the anelastic results to the exact solutions is that the product $\unicode[STIX]{x1D716}q$ must be small compared to unity, where $\unicode[STIX]{x1D716}$ is the ratio of the superadiabatic temperature difference to the adiabatic difference, and $q$ is the ratio of the superadiabatic heat flux to the heat flux conducted along the adiabat. The same condition seems also to be associated with a convergence of the computed heat fluxes. Concerning the anelastic liquid approximation, we confirm previous estimates by Anufriev et al. (Phys. Earth Planet. Inter., vol. 152, 2005, pp. 163–190) and find that its results become generally close to those of the fully compressible model when $\unicode[STIX]{x1D6FC}T{\mathcal{D}}$ is small compared to unity, where $\unicode[STIX]{x1D6FC}$ is the isobaric thermal expansion coefficient, $T$ is the temperature (here $\unicode[STIX]{x1D6FC}T=1$ for an ideal gas) and ${\mathcal{D}}$ is the dissipation number.


Fluids ◽  
2021 ◽  
Vol 6 (7) ◽  
pp. 246
Author(s):  
Rozie Zangeneh

The Wall-modeled Large-eddy Simulation (WMLES) methods are commonly accompanied with an underprediction of the skin friction and a deviation of the velocity profile. The widely-used Improved Delayed Detached Eddy Simulation (IDDES) method is suggested to improve the prediction of the mean skin friction when it acts as WMLES, as claimed by the original authors. However, the model tested only on flow configurations with no heat transfer. This study takes a systematic approach to assess the performance of the IDDES model for separated flows with heat transfer. Separated flows on an isothermal wall and walls with mild and intense heat fluxes are considered. For the case of the wall with heat flux, the skin friction and Stanton number are underpredicted by the IDDES model however, the underprediction is less significant for the isothermal wall case. The simulations of the cases with intense wall heat transfer reveal an interesting dependence on the heat flux level supplied; as the heat flux increases, the IDDES model declines to predict the accurate skin friction.


Author(s):  
Jiehai Zhang ◽  
Arun Muley ◽  
Joseph B. Borghese ◽  
Raj M. Manglik

Enhanced heat transfer characteristics of low Reynolds number airflows in three-dimensional sinusoidal wavy plate-fin channels are investigated. For the computational simulation, steady state, constant property, periodically developed, laminar forced convection is considered with the channel surface at the uniform heat flux condition; the wavy-fin is modeled by its two asymptotic limits of 100% and zero fin efficiency. The governing equations are solved numerically using finite-volume techniques for a non-orthogonal, non-staggered grid. Computational results for velocity and temperature distribution, isothermal Fanning friction factor f and Colburn factor j are presented for airflow rates in the range of 10 ≤ Re ≤ 1500. The numerical results are further compared with experimental data, with excellent agreement, for two different wavy-fin geometries. The influence of fin density on the flow behavior and the enhanced convection heat transfer are highlighted. Depending on the flow rate, a complex flow structure is observed, which is characterized by the generation, spatial growth and dissipation of vortices in the trough region of the wavy channel. The thermal boundary layers on the fin surface are periodically disrupted, resulting in high local heat fluxes. The overall heat transfer performance is improved considerably, compared to the straight channel with the same cross-section, with a relatively smaller increase in the associated pressure drop penalty.


1998 ◽  
Vol 120 (3) ◽  
pp. 641-653 ◽  
Author(s):  
G. F. Naterer ◽  
W. Hendradjit ◽  
K. J. Ahn ◽  
J. E. S. Venart

Boiling heat transfer from inclined surfaces is examined and an analytical model of bubble growth and nucleate boiling is presented. The model predicts the average heat flux during nucleate boiling by considering alternating near-wall liquid and vapor periods. It expresses the heat flux in terms of the bubble departure diameter, frequency and duration of contact with the heating surface. Experiments were conducted over a wide range of upward and downward-facing surface orientations and the results were compared to model predictions. More active microlayer agitation and mixing along the surface as well as more frequent bubble sweeps along the heating surface provide the key reasons for more effective heat transfer with downward facing surfaces as compared to upward facing cases. Additional aspects of the role of surface inclination on boiling dynamics are quantified and discussed.


Sign in / Sign up

Export Citation Format

Share Document